A heterologous expression system of the blue copper-containing nitrite reductase from Alcaligenes xylosoxidans GIFU1051 (AxgNIR) was constructed, and the purified recombinant enzyme was characterized. All the characteristic spectroscopic properties and enzyme activity of native AxgNIR were retained in the copper-reconstituted recombinant protein expressed in Escherichia coli, indicating the correct coordination of two types of Cu (type 1 and 2) in the recombinant enzyme. Moreover, two conserved noncoordinate residues, Asp98 and His255, located near the type 2 Cu site were replaced to elucidate the catalytic residue(s) of NIR. The Asp98 residue hydrogen-bonded to the water molecule ligating the type 2 Cu was changed to Ala, Asn, or Glu, and the His255 residue hydrogen-bonded to Asp98 through the water molecule was replaced with Ala, Lys, or Arg. The catalytic rate constants of all mutants were decreased to 0.4-2% of those of the recombinant enzyme, and the apparent K(m) values for nitrite were greatly increased in the Asp98 mutants. All the steady-state kinetic data of the mutants clearly demonstrate that both Asp98 and His255 are involved not only in the catalytic reaction but also in the substrate anchoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.