Surface plasmon resonance (SPR)‐enhanced optical transmission is actively controlled by an electrochromism of conducting polymer thin films. Polyaniline and poly(3,4‐ethylenedioxythiophene) thin films are deposited on a thin gold grating surface. SPR‐enhanced optical transmission is demonstrated by irradiating white light on the conducting polymer thin film–gold grating surface and detecting the transmitted light from the back side. The transmission SPR system is combined with an electrochemical setup to manipulate the resonance. The wavelength of the sharp peak in the transmission light spectra is tuned by electrochemical doping/dedoping of the conducting polymer thin films. The present study of controllable SPR‐enhanced optical transmission should provide novel active plasmonic devices such as active bandpass filters or biosensors.
We study the level spacing distribution p(s) in the spectrum of random networks. According to our numerical results, the shape of p(s) in the Erdős-Rényi (E-R) random graph is determined by the average degree k and p(s) undergoes a dramatic change when k is varied around the critical point of the percolation transition, k = 1. When k 1, the p(s) is described by the statistics of the Gaussian orthogonal ensemble (GOE), one of the major statistical ensembles in Random Matrix Theory, whereas at k = 1 it follows the Poisson level spacing distribution. Closely above the critical point, p(s) can be described in terms of an intermediate distribution between Poisson and the GOE, the Brodydistribution. Furthermore, below the critical point p(s) can be given with the help of the regularized Gamma-function. Motivated by these results, we analyse the behaviour of p(s) in real networks such as the internet, a word association network and a protein-protein interaction network as well. When the giant component of these networks is destroyed in a node deletion process simulating the networks subjected to intentional attack, their level spacing distribution undergoes a similar transition to that of the E-R graph.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.