Collapse of the rotating magnetized molecular cloud core is studied with the axisymmetric magnetohydrodynamical (MHD) simulations. Due to the change of the equation of state of the interstellar gas, the molecular cloud cores experience several different phases as collapse proce eds. In the isothermal run-away collapse ($n \lesssim 10^{10}{\rm H_2 cm}^{-3}$), a pseudo-disk is formed and it continues to contract till the opaque core is fo rmed at the center. In this disk, a number of MHD fast and slow shock pairs appear running parallelly to the disk. After the equation of state becomes hard, an adiabatic core is formed, which is separated from the isothermal contracting pseudo-disk by the accretion shock front facing radially outwards. By the effect of the magnetic tension, the angular momentum is transferred from the disk mid-plane to the surface. The gas with excess angular momentum near the surface is finally ejected, which explains the molecular bipolar outflow. Two types of outflows are observed. When the poloidal magnetic field is strong (magnetic energy is comparable to the thermal one), a U-shaped outflow is formed in which fast moving gas is confined to the wall whose shape looks like a capit al letter U. The other is the turbulent outflow in which magnetic field lines and velocity fi elds are randomly oriented. In this case, turbulent gas moves out almost perpendicularly from the disk. The continuous mass accretion leads to the quasistatic contraction of the first core. A second collapse due to dissociation of H$_2$ in the first core follows. Finally another quasistatic core is again formed by atomic hydrogen (the second core). It is found that another outflow is ejected around the second atomic core, which seems to correspond to the optical jets or the fast neutral winds.Comment: submitted to Ap
We report the first three-dimensional radiation magnetohydrodynamic (RMHD) simulations of protostellar collapse with and without Ohmic dissipation.We take into account many physical processes required to study star formation processes, including a realistic equation of state. We follow the evolution from molecular cloud cores until protostellar cores are formed with sufficiently high resolutions without introducing a sink particle. The physical processes involved in the simulations and adopted numerical methods are described in detail.We can calculate only about one year after the formation of the protostellar cores with our direct three-dimensional RMHD simulations because of the extremely short timescale in the deep interior of the formed protostellar cores, but successfully describe the early phase of star formation processes. The thermal evolution and the structure of the first and second (protostellar) cores are consistent with previous one-dimensional simulations using full radiation transfer, but differ considerably from preceding multi-dimensional studies with the barotropic approximation. The protostellar cores evolve virtually spherically symmetric in the ideal MHD models because of efficient angular momentum transport by magnetic fields, but Ohmic dissipation enables the formation of the circumstellar disks in the vicinity of the protostellar cores as in previous MHD studies with the barotropic approximation. The formed disks are still small (less than 0.35 AU) because we simulate only the earliest evolution. We also confirm that two different types of outflows are naturally launched by magnetic fields from the first cores and protostellar cores in the resistive MHD models.
We report Atacama Large Millimeter/submillimeter Array (ALMA) cycle 0 observations of C 18 O (J = 2 − 1), SO (J N = 6 5 − 5 4 ) and 1.3 mm dust continuum toward L1527 IRS, a class 0 solar-type protostar surrounded by an infalling and rotating envelope. C 18 O emission shows strong redshifted absorption against the bright continuum emission associated with L1527 IRS, strongly suggesting infall motions in the C 18 O envelope. The C 18 O envelope also rotates with a velocity mostly proportional to r −1 , where r is the radius, while the rotation profile at the -2innermost radius (∼54 AU) may be shallower than r −1 , suggestive of formation of a Keplerian disk around the central protostar of ∼ 0.3 M ⊙ in dynamical mass. SO emission arising from the inner part of the C 18 O envelope also shows rotation in the same direction as the C 18 O envelope. The rotation is, however, rigid-body like which is very different from the differential rotation shown by C 18 O. In order to explain the line profiles and the position-velocity (PV) diagrams of C 18 O and SO observed, simple models composed of an infalling envelope surrounding a Keplerian disk of 54 AU in radius orbiting a star of 0.3 M ⊙ are examined. It is found that in order to reproduce characteristic features of the observed line profiles and PV diagrams, the infall velocity in the model has to be smaller than the free-fall velocity yielded by a star of 0.3 M ⊙ . Possible reasons for the reduced infall velocities are discussed.
The mechanisms causing millimeter-wave polarization in protoplanetary disks are under debate. To disentangle the polarization mechanisms, we observe the protoplanetary disk around HL Tau at 3.1 mm with the Atacama Large Millimeter/submillimeter Array (ALMA), which had polarization detected with CARMA at 1.3 mm. We successfully detect the ring-like azimuthal polarized emission at 3.1 mm. This indicates that dust grains are aligned with the major axis being in the azimuthal direction, which is consistent with the theory of radiative alignment of elongated dust grains, where the major axis of dust grains is perpendicular to the radiation flux. Furthermore, the morphology of the polarization vectors at 3.1 mm is completely different from those at 1.3 mm. We interpret that the polarization at 3.1 mm to be dominated by the grain alignment with the radiative flux producing azimuthal polarization vectors, while the self-scattering dominates at 1.3 mm and produces the polarization vectors parallel to the minor axis of the disk. By modeling the total polarization fraction with a single grain population model, the maximum grain size is constrained to be 100 µm, which is smaller than the previous predictions based on the spectral index between ALMA at 3 mm and VLA at 7 mm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.