SUMMARYIn this study, we propose a new seismic control device, tuned viscous mass damper (TVMD), for building systems. We give a detailed description of an apparent mass amplifier using a ball-screw mechanism, which is one of the most important components for realizing the new device. We also derive a closed-form solution of an optimum seismic control design for a single-degree-of-freedom structure subjected to harmonic excitation. The performance of the new device is compared with those of the conventional viscous damper and viscous mass damper systems. The vibration control system using the TVMD is shown to be the most effective for linear structural systems with dampers having the same additional damping coefficient. The effectiveness of the TVMD for seismic excitation is verified by analyses and shake table tests with a small-scale TVMD.
Summary Interactions among an inerter, spring, and energy dissipation element (EDE) in an inerter system can result in a higher energy dissipation efficiency compared to a single identical EDE, which is referred to as the damping enhancement effect. Previous studies have mainly concentrated on the vibration mitigation effect of the inerter system without an explicit consideration or utilization of the damping enhancement mechanism. In this study, the theoretical essence of the damping enhancement effect is discovered, and a universal design principle is proposed for an inerter system. A fundamental equation is found and demonstrated on the basis of closed‐form stochastic responses, which establishes a bridge between the damping deformation enhancement factor (DDEF) and the response mitigation ratio, thus clarifying the relationship of the damping enhancement effect and the response mitigation effect. Inspired by the equation, a novel damping‐enhancement‐based strategy is proposed to determine the key parameters of an inerter system. Following the performance‐demand‐based design philosophy, the parameters of the inerter system can be determined in the design condition of a target‐damping‐enhancement effect. Through the implementation of the damping enhancement equation, the damping parameter of an inerter system can be directly obtained by the prespecified DDEF and the displacement response mitigation ratio. The influence of parameters on the response mitigation effect and the damping enhancement effect is then investigated to determine ways of obtaining the other two parameters in an inerter system. Finally, design examples are conducted to verify the proposed strategy and the theoretical relationship revealed by the damping enhancement equation. The results show that the proposed design strategy explicitly utilizes the damping enhancement effect for vibration control, where the target of the DDEF is effective in enhancing the efficiency of the EDE for energy dissipation. In the design condition of the target DDEF, the implementation of the proposed damping enhancement equation provides an inerter system with a practical equation to determine the key parameters of an inerter system in a direct manner.
A new seismic control device using a ball screw mechanism as an apparent mass amplifier has been developed, which is referred to as the tuned viscous mass damper (TVMD). This device enables effective seismic control using a tuned mass. For a multiple-degree-of-freedom (MDOF) seismic control system incorporated with the TVMD, a design method based on numerical optimization has been previously presented by the authors. However, simpler design methods that are suitable for a practical design have not yet been presented. At the preliminary design stage, it is essential for structural designers to understand the seismic response characteristics of the structure in terms of modal responses. However, a complexvalued eigenvalue analysis, which most structural designers are unfamiliar with, is required for accurate seismic response estimation. This is because the seismic control system incorporated with TVMDs is nonproportionally damped. In this paper, the authors propose a seismic response estimation method that does not require a complex valued analysis. An analysis example illustrates that the square root of the sum of the square (SRSS) of the maximum modal responses derived from the undamped real eigenvalue analysis gives a good approximation in practical terms.
performance-guaranteed (PG) control and the LQG control proposed in the literature are applied as well. Then the numerical simulation studies are carried out and the effectiveness of the proposed energy harvester is examined by comparing the traditional electromagnetic transducers.
Summary Interstory isolation systems have recently gained popularity as an alternative for seismic protection, especially in densely populated areas. In inter‐story isolation, the isolation system is incorporated between stories instead of the base of the structure. Installing inter‐story isolation is simple, inexpensive, and disruption free in retrofit applications. Benefits include nominally independent structural systems where the accelerations of the added floors are reduced when compared to a conventional structural system. Furthermore, the base shear demand on the total structure is not significantly increased. Practical applications of inter‐story isolation have appeared in the United States, Japan, and China, and likewise new design validation techniques are needed to parallel growing interest. Real‐time hybrid simulation (RTHS) offers an alternative to investigate the performance of buildings with inter‐story isolation. Shake tables, standard equipment in many laboratories, are capable of providing the interface boundary conditions necessary for this application of RTHS. The substructure below the isolation layer can be simulated numerically while the superstructure above the isolation layer can be tested experimentally. This configuration provides a high‐fidelity representation of the nonlinearities in the isolation layer, including any supplemental damping devices. This research investigates the seismic performance of a 14‐story building with inter‐story isolation. A model‐based acceleration‐tracking approach is adopted to control the shake table, exhibiting good offline and online acceleration tracking performance. The proposed methods demonstrate that RTHS is an accurate and reliable means to investigate buildings with inter‐story isolation, including new configurations and supplemental control approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.