Deep learning has revolutionized image analysis and natural language processing with remarkable accuracies in prediction tasks, such as image labeling or word identification. The origin of this revolution was arguably the deep learning approach by the Hinton lab in 2012, which halved the error rate of existing classifiers in the then 2year-old ImageNet database 1 . In hindsight, the combination of algorithmic and hardware advances with the appearance of large and well-labeled datasets has led up to this seminal contribution. The emergence of large amounts of data from single-cell RNA-seq and the recent global effort to chart all cell types in the Human Cell Atlas has attracted an interest in deep-learning applications. However, all current approaches are unsupervised, i.e., learning of latent spaces without using any cell labels, even though supervised learning approaches are often more powerful in feature learning and the most popular approach in the current AI revolution by far. Here, we ask why this is the case. In particular we ask whether supervised deep learning can be used for cell annotation, i.e. to predict cell-type labels from single-cell gene expression profiles. After evaluating 6 classification methods across 14 datasets, we notably find that deep learning does not outperform classical machine-learning methods in the task. Thus, cell-type prediction based on gene-signature derived celltype labels is potentially too simplistic a task for complex non-linear methods, which demands better labels of functional single-cell readouts. We, therefore, are still waiting for the "ImageNet moment" in single-cell genomics.
The size and shape of peptide ions in the gas phase are an under-explored dimension for mass spectrometry-based proteomics. To explore the nature and utility of the entire peptide collisional cross section (CCS) space, we measure more than a million data points from whole-proteome digests of five organisms with trapped ion mobility spectrometry (TIMS) and parallel accumulation -serial fragmentation (PASEF). The scale and precision (CV <1%) of our data is sufficient to train a deep recurrent neural network that accurately predicts CCS values solely based on the peptide sequence. Cross section predictions for the synthetic ProteomeTools library validate the model within a 1.3% median relative error (R > 0.99). Hydrophobicity, position of prolines and histidines are main determinants of the cross sections in addition to sequence-specific interactions. CCS values can now be predicted for any peptide and organism, forming a basis for advanced proteomics workflows that make full use of the additional information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.