In terrestrial ecosystems, plant roots are colonized by various clades of mycorrhizal and endophytic fungi. Focused on the root systems of an oak-dominated temperate forest in Japan, we used 454 pyrosequencing to explore how phylogenetically diverse fungi constitute an ecological community of multiple ecotypes. In total, 345 operational taxonomic units (OTUs) of fungi were found from 159 terminal-root samples from 12 plant species occurring in the forest. Due to the dominance of an oak species (Quercus serrata), diverse ectomycorrhizal clades such as Russula, Lactarius, Cortinarius, Tomentella, Amanita, Boletus, and Cenococcum were observed. Unexpectedly, the root-associated fungal community was dominated by root-endophytic ascomycetes in Helotiales, Chaetothyriales, and Rhytismatales. Overall, 55.3% of root samples were colonized by both the commonly observed ascomycetes and ectomycorrhizal fungi; 75.0% of the root samples of the dominant Q. serrata were so cocolonized. Overall, this study revealed that root-associated fungal communities of oak-dominated temperate forests were dominated not only by ectomycorrhizal fungi but also by diverse root endophytes and that potential ecological interactions between the two ecotypes may be important to understand the complex assembly processes of belowground fungal communities.
In natural forests, hundreds of fungal species colonize plant roots. The preference or specificity for partners in these symbiotic relationships is a key to understanding how the community structures of root-associated fungi and their host plants influence each other. In an oak-dominated forest in Japan, we investigated the root-associated fungal community based on a pyrosequencing analysis of the roots of 33 plant species. Of the 387 fungal taxa observed, 153 (39.5%) were identified on at least two plant species. Although many mycorrhizal and root-endophytic fungi are shared between the plant species, the five most common plant species in the community had specificity in their association with fungal taxa. Likewise, fungi displayed remarkable variation in their association specificity for plants even within the same phylogenetic or ecological groups. For example, some fungi in the ectomycorrhizal family Russulaceae were detected almost exclusively on specific oak (Quercus) species, whereas other Russulaceae fungi were found even on “non-ectomycorrhizal” plants (e.g., Lyonia and Ilex). Putatively endophytic ascomycetes in the orders Helotiales and Chaetothyriales also displayed variation in their association specificity and many of them were shared among plant species as major symbionts. These results suggest that the entire structure of belowground plant–fungal associations is described neither by the random sharing of hosts/symbionts nor by complete compartmentalization by mycorrhizal type. Rather, the colonization of multiple types of mycorrhizal fungi on the same plant species and the prevalence of diverse root-endophytic fungi may be important features of belowground linkage between plant and fungal communities.
Plants influence their soil environment, which affects the next generation of seedlings that can be established. While research has shown that such plant–soil feedbacks occur in the presence of mycorrhizal fungi, it remains unclear when and how mycorrhizal fungi mediate the direction and strength of feedbacks in tree communities. Here we show that arbuscular mycorrhizal and ectomycorrhizal fungal guilds mediate plant–soil feedbacks differently to influence large-scale patterns such as tree species coexistence and succession. When seedlings are grown under the same mycorrhizal type forest, arbuscular mycorrhizal plant species exhibit negative or neutral feedbacks and ectomycorrhizal plant species do neutral or positive feedbacks. In contrast, positive and neutral feedbacks dominate when seedlings are grown in associations within the same versus different mycorrhizal types. Thus, ectomycorrhizal communities show more positive feedbacks than arbuscular mycorrhizal communities, potentially explaining why most temperate forests are ectomycorrhizal.
Soil microbes are considered to be a key determinant of the aboveground plant community. They are not distributed uniformly in the environment, and their activity, abundance, and ecosystem functioning could vary across localities, characterized by high b-diversity. Investigating factors that contribute to high b-diversity can help infer the possible mechanisms of microbial community assembly, and predict the scale and extent of impacts that soil microbes have on the plant community. Because soil systems consist of multiple horizons (i.e., vertical stratification) associated with different soil properties, complete understanding of high b-diversity requires consideration of both horizontal and vertical spatial structures of soil microbial communities. We studied the community composition of soil fungi from the O-and A-horizons in a Castanopsis-dominated temperate forest, and compared horizontal spatial autocorrelation in species composition between the two soil horizons (O-versus A-horizons). Pyrosequencing analysis yielded 67,129 sequencing reads, summed across all the 48 forest soil samples. Clustering analysis resulted in 597 molecular operational taxonomic units (OTUs), 68 % of which were identified as fungi, represented by four phyla. The Mantel test revealed that the O-horizon communities are spatially clustered, and the observed high b-diversity was driven not only by changes in OTUs present, but also by high turnover in identities of OTUs in soil samples. Furthermore, Mantel correlogram analysis showed that the O-horizon communities resembled each other in composition within the range of 50 m, whereas the A-horizon communities lacked such horizontal autocorrelation. These differences in the scale patchiness could arise from two processes: (1) that environmental conditions could show higher heterogeneity in finer scale at the A-horizon than at the O-horizon; and/or (2) dispersal could be more frequent at the O-horizon than the A-horizon. The present study suggests that either environmental filtering (i.e., the niche-based process) or dispersal limitation (i.e., neutral process) could characterize the observed patterns of spatial clustering in the soil fungal community.
Warming may have profound effects on nitrogen (N) cycling by changing plant N demand and underground N supply. However, large uncertainty exists regarding how warming affects the integrated N dynamic in tropical forests. We translocated model plant‐soil ecosystems from a high‐altitude site (600 m) to low‐altitude sites at 300 and 30 m to simulate warming by 1.0°C and 2.1°C, respectively, in tropical China. The effects of experimental warming on N components in plant, soil, leaching, and gas were studied over 6 years. Our results showed that foliar δ15N values and inorganic N (NH4‐N and NO3‐N) leaching were decreased under warming, with greater decreases under 2.1°C of warming than under 1.0°C of warming. The 2.1°C of warming enhanced plant growth, plant N uptake, N resorption, and fine root biomass, suggesting higher plant N demand. Soil total N concentrations, NO3‐N concentrations, microbial biomass N and arbuscular mycorrhizal fungal abundance were decreased under 2.1°C of warming, which probably restricted bioavailable N supply and arbuscular mycorrhizal contribution of N supply to plants. These changes in plants, soils and leaching indicated more closed N cycling under warming, the magnitude of which varied over time. The closed N cycling became pronounced during the first 3 years of warming where the sustained reductions in soil inorganic N could not meet plant N demand. Subsequently, the closed N cycling gradually mitigated, as observed by attenuated positive responses of plant growth and less negative responses of microbial biomass N to warming during the last 3 years. Overall, the more closed N cycling under warming could facilitate ecosystem N retention and affect production in these tropical forests, but these effects would be eventually mitigated with long‐term warming probably due to the restricted plant growth and microbial acclimation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.