Ni-W/boron composite coatings are deposited from an ammonia citrate bath with a boron particle suspension. The effect of the boron incorporation into the Ni-W alloy coating and subsequent heat treatment of the deposits on the microstructure and properties of the Ni-W/boron coatings have been investigated. The boron particles can be uniformly dispersed in the Ni-W alloy, which can lead to an enhancement in the wear performance and hardness of the coatings. The XRD results show that a new Ni4W phase can be formed, especially at heat treatment temperatures beyond 400 °C. The grain size of the deposits is smaller than 10 nm with heat treatment temperatures lower than 600 °C and increases with the heat treatment temperature increasing. The higher temperature will significantly cause the grain coarsening (25.8 nm at 700 °C). Furthermore, the hardness and wear resistance increase with the formation of the Ni4W phase and the inverse Hall–Petch relationship at the lower heat treatment temperatures (<600 °C). While the grain coarsening causes the hardness of the deposits to decrease at the temperature of 700 °C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.