Purpose: To report the safety and efficacy of a novel cell injection therapy using cultured human corneal endothelial cells (hCECs) for endothelial failure conditions via the report of the long-term 5-year postoperative clinical data from a first-in-humans clinical trial group.Design: Prospective observational study.Participants: This study involved 11 eyes of 11 patients with pseudophakic endothelial failure conditions who underwent hCEC injection therapy between December 2013 and December 2014.Methods: All patients underwent follow-up examinations at 1 week, 4 weeks, 12 weeks, and 24 weeks and 1 year, 2 years, 3 years, 4 years, and 5 years after surgery. Specific corneal endothelial cell parameters (i.e., corneal endothelial cell density [ECD], coefficient of variation of area, and percentage of hexagonal cells) and central corneal thickness, best-corrected visual acuity (BCVA) on a Landolt C eye chart, and intraocular pressure (IOP) were recorded.Main Outcome Measures: The primary outcome was the change in central ECD after cell injection therapy, and the secondary outcome was corneal thickness, BCVA, and IOP during the 5-year-postoperative follow-up period.Results: At 5 years after surgery, normal corneal endothelial function was restored in 10 of the 11 eyes, the mean AE standard deviation central corneal ECD was 1257 AE 467 cells/mm 2 (range, 601e2067 cells/mm 2 ), BCVA improved significantly in 10 treated eyes, the mean visual acuity changed from 0.876 logarithm of the minimum angle of resolution before surgery to 0.046 logarithm of the minimum angle of resolution after surgery, and no major adverse reactions directly related to the hCEC injection therapy were observed.Conclusions: The findings in this study confirmed the safety and efficacy of cultured hCEC injection therapy for up to 5 years after surgery.
Aiming to clarify the metabolic interrogation in cell fate decision of cultured human corneal endothelial cells (cHCECs). METHODS. To analyze the metabolites in the culture supernatants (CS), 34 metabolome measurements were carried out for mature differentiated and a variety of cHCECs with cell state transition through a facility service. Integrated proteomics research for cell lysates by liquid chromatography−tandem mass spectrometry (LC-MS/MS) was performed for 3 aliquots of each high-quality or low-quality cHCEC subpopulations (SP). The investigations for the focused genes involved in cHCEC metabolism were performed by using DAVID and its options "KEGG_PATHWAY." RESULTS. The clusters of metabolites coincided well with the distinct content of CD44−/+ SPs. Both secreted pyruvic acid and lactic acid in the CS were negatively correlated with the content of high-quality SPs. Lactic acid and pyruvic acid in the CS exhibited the positive correlation with that of Ile, Leu, and Ser, whereas the negative correlation was with glutamine. Platelet-derived growth factor-ββ in the CS negatively correlated with lactic acid in CS, indicating indirectly the positive correlation with the content of CD44−/+ SPs. Upregulated glycolytic enzymes and influx of glutamine to the tricarboxylic acid cycle may be linked with a metabolic rewiring converting oxidative metabolism in mature differentiated CD44−/+SPs into a glycolytic flux-dependent state in immature SPs with cell state transition. CONCLUSIONS. The findings suggest that the cell fate decision of cHCECs may be dictated at least partly through metabolic rewiring.
Purpose Aiming to clarify the role of mitochondria in cell fate decision of cultured human corneal endothelial cell (cHCEC) subpopulations. Methods The mitochondrial respiratory ability were examined with Mito stress and Mito fuel flex test assays using an extracellular flux analyzer (XFe24; Agilent Technologies; Santa Clara, CA) for human corneal endothelium tissues, mature cHCECs and a variety of cell state transitioned cHCECs. Tricarboxylic acid cycle and acetyl-coenzyme A–related enzymes was analyzed by proteomics for cell lysates using liquid chromatography–tandem mass spectrometry for cHCEC subpopulations. Results The maximum oxygen consumption rate was found to become stable depending on the maturation of cHCECs. In the Mito stress tests, culture supplements, epidermal growth factor, SB203580, and SB431543 significantly repressed oxygen consumption rate, whereas a Rho-associated protein kinase inhibitor Y-27632 increased. Tricarboxylic acid cycle and mitochondria acetyl-coenzyme A–related enzymes were selectively upregulated in mature cHCECs, but not in cell state transitioned cHCECs. The maximum oxygen consumption rate was found to be higher in healthy human corneal endothelium tissues than those with deeply reduced cell density. An upregulated tricarboxylic acid cycle was linked with metabolic rewiring converting cHCECs to acquire the mitochondria-dependent oxidative phenotype. Conclusions Mitochondrial metabolic intermediates and energy metabolism are tightly linked to the endothelial cell fate and function. These findings will help us to standardize a protocol for endothelial cell injection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.