An asymptotic expansion scheme in finance initiated by Kunitomo and Takahashi [15] and Yoshida[68] is a widely applicable methodology for analytic approximation of the expectation of a certain functional of diffusion processes. [46], [47] and [53] provide explicit formulas of conditional expectations necessary for the asymptotic expansion up to the third order. In general, the crucial step in practical applications of the expansion is calculation of conditional expectations for a certain kind of Wiener functionals. This paper presents two methods for computing the conditional expectations that are powerful especially for high order expansions: The first one, an extension of the method introduced by the preceding papers presents a general scheme for computation of the conditional expectations and show the formulas useful for expansions up to the fourth order explicitly. The second one develops a new calculation algorithm for computing the coefficients of the expansion through solving a system of ordinary differential equations that is equivalent to computing the conditional expectations. To demonstrate their effectiveness, the paper gives numerical examples of the approximation for 位-SABR model up to the fifth order and a cross-currency Libor market model with a general stochastic volatility model of the spot foreign exchange rate up to the fourth order.
This paper presents a new computational scheme for an asymptotic expansion method of an arbitrary order. The asymptotic expansion method in finance initiated by Kunitomo and Takahashi (1992), Yoshida (1992b) and Takahashi (1995, 1999) is a widely applicable methodology for an analytic approximation of expectation of a certain functional of diffusion processes. Hence, not only academic researchers but also many practitioners have used the methodology for a variety of financial issues such as pricing or hedging complex derivatives under high-dimensional underlying stochastic environments. In practical applications of the expansion, a crucial step is calculation of conditional expectations for a certain kind of Wiener functionals. Takahashi (1995, 1999) and Takahashi and Takehara (2007) provided explicit formulas for those conditional expectations necessary for the asymptotic expansion up to the third order. This paper presents the new method for computing an arbitrary-order expansion in a general diffusion-type stochastic environment, which is powerful especially for high-order expansions: We develops a new calculation algorithm for computing coefficients of the expansion through solving a system of ordinary differential equations that is equivalent to computing the conditional expectations directly. To demonstrate its effectiveness, the paper gives numerical examples of the approximation for a 位-SABR model up to the fifth order.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.