Mild acute intestinal inflammation induced by DSS can be inhibited by 4-CA and this action is associated with the suppression of COX-2 expression and activity.
Abstract. Interactions between μ-opioid receptor (μOR) and cannabinoid CB 1 receptor (CB 1 R) were examined by morphological and electrophysiological methods. In baby hamster kidney (BHK) cells coexpressing μOR fused to the yellow fluorescent protein Venus and CB 1 R fused to the cyan fluorescent protein Cerulean, both colors were detected on the cell surface; and fluorescence resonance energy transfer (FRET) analysis revealed that μOR and CB 1 R formed a heterodimer. Coimmunoprecipitation and Western blotting analyses also confirmed the heterodimers of μOR and CB 1 R. [D-Ala 2 ,N-Me-Phe 4 ,Gly 5 -ol]enkephalin (DAMGO) or CP55,940 elicited K + currents in Xenopus oocytes expressing μOR or CB 1 R together with G protein activated-inwardly rectifying K + channels (GIRKs), respectively. In oocytes coexpressing both receptors, either of which was fused to the chimeric Gα protein G qi5 that activates the phospholipase C pathway, both DAMGO and CP55,940 elicited Ca 2+ -activated Cl − currents, indicating that each agonist can induce responses through G qi5 fused to either its own receptor or the other. Experiments with endogenous G i/o protein inactivation by pertussis toxin (PTX) supported the functional heterodimerization of μOR/ CB 1 R through PTX-insensitive G qi5(m) fused to each receptor. Thus, μOR and CB 1 R form a heterodimer and transmit a signal through a common G protein. Our electrophysiological method could be useful for determination of signals mediated through heterodimerized G protein-coupled receptors.
The multiple 5-hydroxytryptamine (5-HT, serotonin) receptor subtypes are distinguished. In this article, we described mainly the 5-HT4 receptor of four subtypes of functional 5-HT receptors, 5-HT1, 5-HT2, 5-HT3, and 5-HT4, recognized in the gastrointestinal tract. In-vivo microdialysis experiments determined that activation of the 5-HT4 receptor stimulated intestinal motor activity associated with a local increase in acetylcholine (ACh) release from the intestinal cholinergic neurons in the whole body of dogs. The 5-HT4 receptor-mediated response of ACh release in the antral, corporal, and fundic strips isolated from guinea pig stomach corresponds to the presence of 5-HT4 receptor in the myenteric plexus. In-vitro receptor autoradiograms of the stomach and colon indicate that the distribution of 5-HT4 receptors in human tissues is similar to that in the guinea pig, although density of 5-HT4 receptors in the myenteric plexus of human tissues is lower than that in guinea pig tissues. The 5-HT4 receptors located in the myenteric plexus may participate in gastrointestinal motility, and thus the 5-HT4 agonists and antagonists may be available for treatment of dysfunction of gastrointestinal motility.
We investigated the inactivation process of macroscopic cardiac L-type Ca(2+) channel currents using the whole cell patch-clamp technique with Na(+) as the current carrier. The inactivation process of the inward currents carried by Na(+) through the channel consisted of two components >0 mV. The time constant of the faster inactivating component (30.6 +/- 2.2 ms at 0 mV) decreased with depolarization, but the time constant of the slower inactivating component (489 +/- 21 ms at 0 mV) was not significantly influenced by the membrane potential. The inactivation process in the presence of isoproterenol (100 nM) consisted of a single component (538 +/- 60 ms at 0 mV). A protein kinase inhibitor, H-89, decreased the currents and attenuated the effects of isoproterenol. In the presence of cAMP (500 microM), the inactivation process consisted of a single slow component. We propose that the faster inactivating component represents a kinetic of the dephosphorylated or partially phosphorylated channel, and phosphorylation converts the kinetics into one with a different voltage dependency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.