Riparian plants can use nitrogen (N) from soil and river water, but the use of river water N might be limited in higher floodplain environments of the Chikuma River. The purpose of this study is to reveal the relationship between N uptake by riparian plants and the floodplain topography (relative height and distance from a river channel). We examined the hypothesis that surface sediment removal from the higher floodplain increases river water N uptake by riparian plants by using a stable isotope analysis. The d 15 N value of river water samples (ca. 8%) were significantly higher than those of the soil extracts (ca. 3%) in the study area. The d 15 N value of riparian plants increased from +3.0% (standard deviation, SD ±2.1%) before sediment removal to +9.6% (±2.1%) after sediment removal, although there was no significant change in the d 15 N value in N sources of soil and river water. The sediment removal enhanced frequency of flood disturbance, relative ground water level, and river water N uptake by riparian plants on the floodplain.
Fixation of river flow passages and riverbed degradation may facilitate the development of higher floodplains with the establishment of exotic species such as black locust (Robinia pseudoacacia L.). We quantitatively evaluated the relationship between nitrogen (N) levels in black locust trees and in sediments under different flood disturbance regimes in a riparian area of the Chikuma River. In this study, allometric equations were developed for relating leaf N content to diameter at breast height of black locust. The amount of leaf N in black locust increased with distance from the river, reaching 159 kg N ha -1 at 180 m from the river. There was a small difference in N content between green and fallen leaves (0.2%), and so the leaf N was almost equivalent to N input to riparian sediments. Fine sediments accumulated on the riparian area, where the amount of sediments N increased with distance from the river, ranging from 1091 ± 767 to 4953 ± 2953 kg N ha -1 . The N accumulation rates also increased with distance from the river, corresponding with the amount of leaf N in black locust per unit area, but the former exceeded the latter. The sediment N accumulation might be accelerated by sediment trapping effect due to riparian vegetation itself. A large input of N provided by invaded black locust might alter nutrient dynamics and native plant community structure in the riparian area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.