Blood group P1/P2 is a glycolipid antigen system for which the genetic mechanism has not yet been clarified. We analyzed the potential of the cloned Gb3/CD77 synthase to synthesize P1 antigen, because Gb3/CD77 and P1 share a common structure, Gal␣1,4Gal1,4Glc (NAc)؊. L cell transfectants with Gb3/CD77 synthase cDNA expressed marginal levels of P1 on the cell surface but contained high levels of P1 in the cytoplasm. P2-type erythrocytes, which were serotyped as P2, also contained definite P1 antigen inside cells, although the amounts were lower than those of P1 cells. Only p erythrocytes lacked P1 antigen corresponding with functionlosing mutations in the Gb3/CD77 synthase gene. Synthesis of P1 antigen from paragloboside in vitro was demonstrated using membrane fraction of the transfectants and a fusion enzyme with protein A. These results strongly suggested that P1 synthase is identical to Gb3/ CD77 synthase and appear to propose a clue for the solution of the long-pending P1/P2/p puzzle. The P1/P2 difference might result from the difference in P1 quantity based on either different enzyme activity or the presence/absence of other enzyme modulators. Because P2 erythrocytes showed lower levels of Gb3/CD77 synthase mRNA than P1, 5-upstream promoter regions were analyzed, resulting in the identification of two P2-specific homozygous mutations. Differences in the transcriptional regulation in erythrocytes might be a major factor determining P1/P2.
Adoptive cell therapy using tumor-specific T cells is a promising strategy for treating patients with malignancy. However, accumulating evidences have demonstrated that optimal function of tumor-reactive T cells is often attenuated by negative regulatory signal(s) delivered through receptors, such as cytotoxic T-lymphocyte antigen 4 (CTLA-4), programmed death 1 (PD-1), and their cognate ligands. Although systemic blocking of these molecules needs careful attention on the risk of uncontrolled immune activation, selective inhibition of negative signals in tumor-specific T cells by their genetic modification is an attractive approach to overcome immunological suppression in cancer patients. Here, we demonstrate the improved effector functions of tumor-specific CD4(+) and CD8(+) human T cells by small interfering RNA (siRNA) -mediated silencing of PD-1 ligands, PD-L1 or PD-L2. Tumor antigen MAGE-A4-specific human T-cell clones upregulated the expression of PD-1 ligands upon activation. siRNA-mediated knockdown of PD-L1 or -L2 enhanced the interferon-γ production and antigen-specific cytotoxicity of these cells. Peripheral blood mononuclear cells transduced with a retroviral vector encoding MAGE-A4-specific T-cell receptor α/β chains also increased their effector functions by this modification. These results suggest that siRNA-mediated knockdown of PD-1 ligands is an attractive strategy to inhibit a negative regulatory mechanism of tumor-specific T cells resulting in enhanced efficacy of adoptive T-cell therapy of cancer using genetically modified autologous lymphocytes.
p phenotype individuals lack both P k (Gb3) and P (Gb4) glycolipid antigens of the P blood group system. To explore the molecular basis for this phenotype, DNA sequences of Gb3 synthase (␣1,4-galactosyltransferase; ␣1,4Gal-T) in six p phenotype individuals from Japan and Sweden were analyzed. A missense mutation P251L and a nonsense mutation W261stop in three and one Japanese indivuiduals, respectively, and missense mutations M183K and G187D in one each of two Swedish p individuals were found, indicating that p individuals from Japan and Sweden have distinct and multiple homozygous point mutations in the coding region. In the function analysis of the mutated ␣1,4Gal-Ts by the transfection of the expression vectors, P251L and M183K mutations showed complete loss of enzyme function, and W261stop and G187D mutations resulted in the marginal activity. BLAST analysis of homologous sequences of ␣1,4Gal-T revealed that three residues, Met 183 , Gly 187 , and Pro 251 , at which missense mutations were found, were highly conserved among all species examined, suggesting their importance for the function of ␣1,4Gal-T.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.