We report here development of a novel gene trap method in zebrafish using the Tol2 transposon system. First, we established a highly efficient transgenesis method in which a plasmid DNA containing the Tol2 transposon vector and the transposase mRNA synthesized in vitro were coinjected into one-cell stage embryos. The transposon vector inserted in the genome could be transmitted to the F1 progeny at high frequencies, and regulated gene expression by a specific promoter could be recapitulated in transgenic fish. Then we constructed a transposon-based gene trap vector containing a splice acceptor and the GFP gene, performed a pilot screen for gene trapping, and obtained fish expressing GFP in temporally and spatially restricted patterns. We confirmed the endogenous transcripts were indeed trapped by the insertions, and the insertion could interfere with expression of the trapped gene. We propose our gene trap approach should facilitate studies of vertebrate development and organogenesis.
Targeted gene expression is a powerful approach to study the function of genes and cells in vivo. In Drosophila, the P elementmediated Gal4-UAS method has been successfully used for this purpose. However, similar methods have not been established in vertebrates. Here we report the development of a targeted gene expression methodology in zebrafish based on the Tol2 transposable element and its application to the functional study of neural circuits. First, we developed gene trap and enhancer trap constructs carrying an engineered yeast Gal4 transcription activator (Gal4FF) and transgenic reporter fish carrying the GFP or the RFP gene downstream of the Gal4 recognition sequence (UAS) and showed that the Gal4FF can activate transcription through UAS in zebrafish. Second, by using this Gal4FF-UAS system, we performed large-scale screens and generated a large collection of fish lines that expressed Gal4FF in specific tissues, cells, and organs. Finally, we developed transgenic effector fish carrying the tetanus toxin light chain (TeTxLC) gene downstream of UAS, which is known to block synaptic transmission. We crossed the Gal4FF fish with the UAS:TeTxLC fish and analyzed double transgenic embryos for defects in touch response. From this analysis, we discovered that targeted expression of TeTxLC in distinct populations of neurons in the brain and the spinal cord caused distinct abnormalities in the touch response behavior. These studies illustrate that our Gal4FF gene trap and enhancer trap methods should be an important resource for genetic analysis of neuronal functions and behavior in vertebrates.targeted gene expression ͉ Gal4-UAS ͉ tetanus toxin ͉ touch response ͉ interneuron
The Tol2 element is a naturally occurring active transposable element found in vertebrate genomes. The Tol2 transposon system has been shown to be active from fish to mammals and considered to be a useful gene transfer vector in vertebrates. However, cis-sequences essential for transposition have not been characterized. Here we report the characterization of the minimal cis-sequence of the Tol2 element. We constructed Tol2 vectors containing various lengths of DNA from both the left (59) and the right (39) ends and tested their transpositional activities both by the transient excision assay using zebrafish embryos and by analyzing chromosomal transposition in the zebrafish germ lineage. We demonstrated that Tol2 vectors with 200 bp from the left end and 150 bp from the right end were capable of transposition without reducing the transpositional efficiency and found that these sequences, including the terminal inverted repeats (TIRs) and the subterminal regions, are sufficient and required for transposition. The left and right ends were not interchangeable. The Tol2 vector carrying an insert of .11 kb could transpose, but a certain length of spacer, ,276 but .18 bp, between the left and right ends was necessary for excision. Furthermore, we found that a 5-bp sequence, 59-(A/G)AGTA-39, is repeated 33 times in the essential subterminal region. Mutations in the repeat sequence at 13 different sites in the subterminal region, as well as mutations in TIRs, severely reduced the excision activity, indicating that they play important roles in transposition. The identification of the minimal cis-sequence of the Tol2 element and the construction of mini-Tol2 vectors will facilitate development of useful transposon tools in vertebrates. Also, our study established a basis for further biochemical and molecular biological studies for understanding roles of the repetitive sequence in the subterminal region in transposition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.