We prove that a locally compact space with an upper curvature bound is a topological manifold if and only if all of its spaces of directions are homotopy equivalent and not contractible. We discuss applications to homology manifolds, limits of Riemannian manifolds and deduce a sphere theorem.2010 Mathematics Subject Classification. 53C20, 53C21, 53C23.
We prove that a locally compact space with an upper curvature bound is a topological manifold if and only if all of its spaces of directions are homotopy equivalent and not contractible. We discuss applications to homology manifolds, limits of Riemannian manifolds and deduce a sphere theorem.
We obtain a volume convergence theorem for Alexandrov spaces with curvature bounded above with respect to the Gromov-Hausdorff distance. As one of the main tools proving this, we construct an almost isometry between Alexandrov spaces with curvature bounded above, with weak singularities, which are close to each other. Furthermore, as an application of our researches of convergence phenomena, for given positive integer n, we prove that, if a compact, geodesically complete, n-dimensional CAT(1)-space has the volume sufficiently close to that of the unit n-sphere, then it is bi-Lipschitz homeomorphic to the unit n-sphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.