This paper presents a fundamental study on jet vectoring control by adjusting the dimensionless frequency of synthetic jets over time without changing the injection nozzle shape in actuators. This work involves the introduction of asymmetric slots with various sharp projection lengths in free synthetic jets for various actuator frequencies. The influences of the dimensionless parameters, sharp projection length C, and actuator frequency f* on the behavior of free synthetic jets are experimentally investigated under the same slot width b and Reynolds number Re = 990, and numerical simulations are performed to supplement these experiments. Furthermore, the behavior of synthetic jets is compared with that of continuous jets. The measurements of the velocities for both jet types are performed for the flow visualizations to observe the jet behaviors obtained using the smoke-wire method. The typical flow patterns and the time-averaged velocity distributions of the synthetic jets for various sharp projection lengths and dimensionless frequencies are demonstrated through the experiment. The influence of the dimensionless frequency on the stagnation point near a rigid wall when the inclined synthetic jets form a recirculation flow is also investigated. Furthermore, the degree of the bend of the jets is evaluated based on the change in the jet center's position at a reference downstream cross section. The results show that the jet direction of the synthetic jets induced by the asymmetric slots is related to both the dimensionless sharp projection length and the dimensionless frequency.
Over the last decade, several studies have investigated synthetic jets. However, there are still many clarifications needed, including details of the structure and Coanda effect of synthetic jets. The present study clarifies some fundamental flow characteristics of free synthetic jets and synthetic jets near a rigid boundary by conducting an experiment and numerical simulations. As the main results, it is found that the velocity distribution of free synthetic jets depends on K = Re/S 2 (the ratio of the Reynolds number to the square of the Stokes number) and can be identified by the maximum velocity at the centerline and the jet half-width. In addition, it is confirmed that the flow characteristics of the synthetic jet near a rigid boundary and the re-attachment length of the synthetic jet are determined not only by H 1 /b 0 (normalized step height) but also K.
In recent years, studies on the fundamental principle of thrust vectoring using jets have been conducted to realize next-generation aircraft applications. Various methods for vector control of jet flow have been proposed, such as methods that achieve control via steady, continuous jets under the Coanda effect, steady suction flows near the Coanda surface, and synthetic jets from a neighbor slot as secondary jets. However, there are no studies on the flow direction control of jets using the secondary synthetic Coanda jet. In this study, the influence of synthetic jets near a circular cylinder on the flow characteristics of a primary jet was experimentally investigated. The main results obtained in the study were that the direction of the primary jet flow can be controlled using the secondary synthetic jet, and the degree of jet deflection depends on the frequency of the velocity oscillation for the secondary synthetic jet under an identical momentum ratio. Furthermore, when using the synthetic jet as the secondary flow, a controllable region larger than that obtained when using a steady and continuous injection or suction flow is expected. This is because secondary flow is generated using the ratio of the momentum between the primary jet and the secondary flow at the slot exit in conjunction with the dimensionless frequency of the synthetic jet based on the velocity of the primary flow at the slot exit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.