Abstract-TheProgramming by Demonstration (PbD) technique aims at teaching a robot to accomplish a task by learning from a human demonstration. In a manipulation context, recognizing the demonstrator's hand gestures, specifically when and how objects are grasped, plays a significant role. Here, a system is presented that uses both hand shape and contact-point information obtained from a data glove and tactile sensors to recognize continuous human-grasp sequences. The sensor fusion, grasp classification, and task segmentation are made by a hidden Markov model recognizer. Twelve different grasp types from a general, task-independent taxonomy are recognized. An accuracy of up to 95% could be achieved for a multiple-user system. Index Terms-Hidden Markov models (HMMs), Programming by Demonstration (PbD), sensor fusion, user interfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.