Background-Many studies have suggested that the renin-angiotensin system plays an important role in the development of pressure overload-induced cardiac hypertrophy. Moreover, it has been reported that pressure overload-induced cardiac hypertrophy is completely prevented by ACE inhibitors in vivo and that the stored angiotensin II (Ang II) is released from cardiac myocytes in response to mechanical stretch and induces cardiomyocyte hypertrophy through the Ang II type 1 receptor (AT 1 ) in vitro. These results suggest that the AT 1 -mediated signaling is critical for the development of mechanical stress-induced cardiac hypertrophy. Methods and Results-To determine whether AT 1 -mediated signaling is indispensable for the development of pressure overload-induced cardiac hypertrophy, pressure overload was produced by constricting the abdominal aorta of AT 1A knockout (KO) mice. Quantitative reverse transcriptase-polymerase chain reaction revealed that the cardiac AT 1 (probably AT 1B ) mRNA levels in AT 1A KO mice were Ͻ10% of those of wild-type (WT) mice and were not affected by pressure overload. Chronic treatment with subpressor doses of Ang II increased left ventricular mass in WT mice but not in KO mice. Pressure overload, however, fully induced cardiac hypertrophy in KO as well as WT mice. There were no significant differences between WT and KO mice in expression levels of fetal-type cardiac genes, in the left ventricular wall thickness and systolic function as revealed by the transthoracic echocardiogram, or in the histological changes such as myocyte hypertrophy and fibrosis.
Cardiac chamber formation involves dynamic changes in myocardial organization, including trabeculation and expansion of the compact layer. The positional cues that regulate myocardial patterning, however, remain unclear. Through ligation of the Plexin-A1 receptor, the transmembrane-type semaphorin Sema6D regulates endocardial cell migration. Here, we demonstrate that knockdown of either Sema6D or Plexin-A1 leads to the generation of a small, thin ventricular compact layer and to defective trabeculation. In the heart, expression of the Plexin-A1 extracellular domain alone can rescue the defective trabeculation induced by suppression of Plexin-A1, but not that resulting from defective Sema6D expression. This indicates that reverse signalling by Sema6D occurs within the myocardium. In a ligand-dependent manner, Abl kinase is recruited to the cytoplasmic tail of Sema6D and activated, resulting in phosphorylation of Enabled and dissociation from Sema6D. Constitutive activation of Sema6D signalling enhances the migration of myocardial cells into the trabeculae, whereas inhibition arrests cells within the compact layer. Thus, Sema6D coordinates both compact-layer expansion and trabeculation, functioning as both a ligand and a receptor for Plexin-A1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.