An oleic acid-coated Fe3O4 nanocrystal self-assembled film was fabricated via drop casting of colloidal particles on a SiO2/Si substrate. The film exhibited bifurcation of the zero-field-cooled and field-cooled magnetizations around 250 K. The nonlinear current-voltage (I-V) characteristics between the source and drain electrodes in both zero and non-zero magnetic fields (H) were observed above and below the bifurcation temperature. A large negative magnetoresistance (MR ≈ -60%) was achieved at 200 K and H = 1 T. Even at 295 K and 0.2 T, the negative MR (∼ -50%) persisted. A Fowler-Nordheim plot and power-law scaling of the I-V characteristics revealed that the current flows through two-dimensional (2D) percolated electron tunneling paths. The enlargement of MR can be attributed to spin-dependent electron tunneling between magnetically coupled Fe3O4 nanocrystals self-assembled in 2D ordered arrays.
An oleic acid-coated Fe2.7Co0.3O4 nanocrystal (NC) self-assembled film was fabricated via drop casting of colloidal particles onto a three-terminal electrode/MgO substrate. The film exhibited a large coercivity (1620 Oe) and bifurcation of the zero-field-cooled and field-cooled magnetizations at 300 K. At 10 K, the film exhibited both a Coulomb blockade due to single electron charging as well as a magnetoresistance of ∼-80% due to spin-dependent electron tunneling. At 300 K, the film also showed a magnetoresistance of ∼-80% due to hopping of spin-polarized electrons. Enhanced magnetic coupling between adjacent NCs and the large coercivity resulted in a large spin-polarized current flow even at 300 K.
Oleic acid coated Fe3-xCoxO4 (x = 0, 0.1 and 0.3) nanocrystal self-assembled films were fabricated via drop-casting of colloidal particles on a SiO2/Si substrate. Nanocrystals of the Fe3-xCoxO4 exhibited bifurcation of the zero-field-cooled and field-cooled magnetizations at 300 K. The Fe3-xCoxO4 nanocrystal drop-cast films demonstrated nonlinear current-voltage characteristics between the source and drain electrodes in magnetic fields of zero and 0.2 T, and magnetoresistance reached into −46% for the x = 0 film and −50% for both the x = 0.1 and 0.3 films at 300 K. Oleic acid coated Fe3-xCoxO4 (x = 0.1 and 0.3) nanocrystal would boost developments of a high performance current switching device using negative magnetoresistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.