In this review, we describe the recent advances in supramolecular helical assemblies formed from chiral and achiral small molecules, oligomers (foldamers), and helical and nonhelical polymers from the viewpoints of their formations with unique chiral phenomena, such as amplification of chirality during the dynamic helically assembled processes, properties, and specific functionalities, some of which have not been observed in or achieved by biological systems. In addition, a brief historical overview of the helical assemblies of small molecules and remarkable progress in the synthesis of single-stranded and multistranded helical foldamers and polymers, their properties, structures, and functions, mainly since 2009, will also be described.
In the chromatographic separation of enantiomers the order of elution is determined by the strength of diasteromeric interactions between the components of the mixture and a chiral stationary phase. For analytical purposes, it is ideal to have the minor component elute first, whereas in the preparative mode a faster elution of the major component is desirable. Here we describe a stationary phase constructed from a polyacetylene that bears 2,2'-bisphenol-derived side chains in which chirality can be switched in the solid state prior to use. Both the macromolecular helicity of the polymer backbone and the axial chirality of the side chains can be switched in the solid state by interaction with a chiral alcohol, but importantly are maintained after removal of the chiral alcohol because of a memory effect. The chiral stationary phase thus prepared was used to separate the enantiomers of trans-stilbene oxide with the enantiomer elution order determined by the preseparation treatment.
Strigolactones (SLs) act as plant hormones that inhibit shoot branching and stimulate secondary growth of the stem, primary root growth, and root hair elongation. In the moss Physcomitrella patens, SLs regulate branching of chloronemata and colony extension. In addition, SL-deficient and SL-insensitive mutants show delayed leaf senescence. To explore the effects of SLs on leaf senescence in rice (Oryza sativa L.), we treated leaf segments of rice dwarf mutants with a synthetic SL analogue, GR24, and evaluated their chlorophyll contents, ion leakage, and expression levels of senescence-associated genes. Exogenously applied GR24 restored normal leaf senescence in SL-deficient mutants, but not in SL-insensitive mutants. Most plants highly produce endogenous SLs in response to phosphate deficiency. Thus, we evaluated effects of GR24 under phosphate deficiency. Chlorophyll levels did not differ of in the wild-type between the sufficient and deficient phosphate conditions, but increased in the SL-deficient mutants under phosphate deficiency, leading in the strong promotion of leaf senescence by GR24 treatment. These results indicate that the mutants exhibited increased responsiveness to GR24 under phosphate deficiency. In addition, GR24 accelerated leaf senescence in the intact SL-deficient mutants under phosphate deficiency as well as dark-induced leaf senescence. The effects of GR24 were stronger in d10 compared to d17. Based on these results, we suggest that SLs regulate leaf senescence in response to phosphate deficiency.
We report the first direct chirality sensing of a series of chiral hydrocarbons and isotopically chiral compounds (deuterated isotopomers), which are almost impossible to detect by conventional optical spectroscopic methods, by a stereoregular polyacetylene bearing 2,2'-biphenol-derived pendants. The polyacetylene showed a circular dichroism due to a preferred-handed helix formation in response to the hardly detectable hidden chirality of saturated tertiary or chiroptical quaternary hydrocarbons, and deuterated isotopomers. In sharp contrast to the previously reported sensory systems, the chirality detection by the polyacetylene relies on an excess one-handed helix formation induced by the chiral hydrocarbons and deuterated isotopomers via significant amplification of the chirality followed by its static memory, through which chiral information on the minute and hidden chirality can be stored as an excess of a single-handed helix memory for a long time.
Symmetrically substituted poly(diphenylacetylene) (PDPA) bearing carboxy pendants was found to fold into a onehanded helix upon thermal annealing with nonracemic amines in water accompanied by chiral amplification of the helicity. The induced right-or left-handed helical PDPA was retained (memorized) after complete removal of the chiral amines, thus producing a one-handed helical circularly polarized luminescent PDPA in a helix-sense-selective manner. The helical PDPA with static helicity memory is tolerant toward modification of carboxy pendants, providing functional PDPAs with an optical activity solely due to macromolecular helicity. The PDPA and its derivatives before and after the one-handed helicity induction and its subsequent memory of the helicity exhibited well-resolved very simple 1 H and 13 C NMR and Raman spectra whose spectral patterns are virtually identical independent of the helical sense bias. On the basis of the 1 H and 13 C NMR, IR, Raman, and vibrational and electronic circular dichroism spectral measurement results combined with theoretical calculations, the key structural features (cis or trans and cisoid or transoid) of the PDPA as well as its helix inversion barrier and absolute handedness (right-or left-handed helix) and helix-sense excess of the one-handed helical PDPA and its derivatives with static helicity memory were determined. As a result, almost complete right-and left-handed helical cis−transoidal PDPAs with 98% helix-sense excess were successfully obtained using noncovalent helicity induction and memory strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.