We have investigated by first principles the electronic, vibrational, and structural properties of bct C4, a new form of crystalline sp{3} carbon recently found in molecular dynamics simulations of carbon nanotubes under pressure. This phase is transparent, dynamically stable at zero pressure, and more stable than graphite beyond 18.6 GPa. Coexistence of bct C4 with M carbon can explain better the x-ray diffraction pattern of a transparent and hard phase of carbon produced by the cold compression of graphite. Its structure appears to be intermediate between that of graphite and hexagonal diamond. These facts suggest that bct C4 is an accessible form of sp{3} carbon along the graphite-to-hexagonal diamond transformation path.
The Earth's core is about ten per cent less dense than pure iron (Fe), suggesting that it contains light elements as well as iron. Modelling of core formation at high pressure (around 40-60 gigapascals) and high temperature (about 3,500 kelvin) in a deep magma ocean predicts that both silicon (Si) and oxygen (O) are among the impurities in the liquid outer core. However, only the binary systems Fe-Si and Fe-O have been studied in detail at high pressures, and little is known about the compositional evolution of the Fe-Si-O ternary alloy under core conditions. Here we performed melting experiments on liquid Fe-Si-O alloy at core pressures in a laser-heated diamond-anvil cell. Our results demonstrate that the liquidus field of silicon dioxide (SiO) is unexpectedly wide at the iron-rich portion of the Fe-Si-O ternary, such that an initial Fe-Si-O core crystallizes SiO as it cools. If crystallization proceeds on top of the core, the buoyancy released should have been more than sufficient to power core convection and a dynamo, in spite of high thermal conductivity, from as early on as the Hadean eon. SiO saturation also sets limits on silicon and oxygen concentrations in the present-day outer core.
CaIrO3-type MgSiO3 is the planet-forming silicate stable at pressures and temperatures beyond those of Earth's core-mantle boundary. First-principles quasiharmonic free-energy computations show that this mineral should dissociate into CsCl-type MgO cotunnite-type SiO2 at pressures and temperatures expected to occur in the cores of the gas giants + and in terrestrial exoplanets. At approximately 10 megabars and approximately 10,000 kelvin, cotunnite-type SiO2 should have thermally activated electron carriers and thus electrical conductivity close to metallic values. Electrons will give a large contribution to thermal conductivity, and electronic damping will suppress radiative heat transport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.