The present findings suggest that lithium in drinking water may be associated with the low risk of male suicide in the general population. Further studies are required to confirm these findings and investigate gender differences.
Background
The choice of preprocessing pipeline introduces variability in neuroimaging analyses that affects the reproducibility of scientific findings. Features derived from structural and functional MRI data are sensitive to the algorithmic or parametric differences of preprocessing tasks, such as image normalization, registration, and segmentation to name a few. Therefore it is critical to understand and potentially mitigate the cumulative biases of pipelines in order to distinguish biological effects from methodological variance.
Methods
Here we use an open structural MRI dataset (ABIDE), supplemented with the Human Connectome Project, to highlight the impact of pipeline selection on cortical thickness measures. Specifically, we investigate the effect of (i) software tool (e.g., ANTS, CIVET, FreeSurfer), (ii) cortical parcellation (Desikan-Killiany-Tourville, Destrieux, Glasser), and (iii) quality control procedure (manual, automatic). We divide our statistical analyses by (i) method type, i.e., task-free (unsupervised) versus task-driven (supervised); and (ii) inference objective, i.e., neurobiological group differences versus individual prediction.
Results
Results show that software, parcellation, and quality control significantly affect task-driven neurobiological inference. Additionally, software selection strongly affects neurobiological (i.e. group) and individual task-free analyses, and quality control alters the performance for the individual-centric prediction tasks.
Conclusions
This comparative performance evaluation partially explains the source of inconsistencies in neuroimaging findings. Furthermore, it underscores the need for more rigorous scientific workflows and accessible informatics resources to replicate and compare preprocessing pipelines to address the compounding problem of reproducibility in the age of large-scale, data-driven computational neuroscience.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.