Katayama K, Iwamoto E, Ishida K, Koike T, Saito M. Inspiratory muscle fatigue increases sympathetic vasomotor outflow and blood pressure during submaximal exercise. Am J Physiol Regul Integr Comp Physiol 302: R1167-R1175, 2012. First published March 28, 2012 doi:10.1152/ajpregu.00006.2012.-The purpose of this study was to elucidate the influence of inspiratory muscle fatigue on muscle sympathetic nerve activity (MSNA) and blood pressure (BP) response during submaximal exercise. We hypothesized that inspiratory muscle fatigue would elicit increases in sympathetic vasoconstrictor outflow and BP during dynamic leg exercise. The subjects carried out four submaximal exercise tests: two were maximal inspiratory pressure (PImax) tests and two were MSNA tests. In the PI max tests, the subjects performed two 10-min exercises at 40% peak oxygen uptake using a cycle ergometer in a semirecumbent position [spontaneous breathing for 5 min and with or without inspiratory resistive breathing for 5 min (breathing frequency: 60 breaths/min, inspiratory and expiratory times were each set at 0.5 s)]. Before and immediately after exercise, PImax was estimated. In MSNA tests, the subjects performed two 15-min exercises (spontaneous breathing for 5 min, with or without inspiratory resistive breathing for 5 min, and spontaneous breathing for 5 min). MSNA was recorded via microneurography of the right median nerve at the elbow. PImax decreased following exercise with resistive breathing, whereas no change was found without resistance. The time-dependent increase in MSNA burst frequency (BF) appeared during exercise with inspiratory resistive breathing, accompanied by an augmentation of diastolic BP (DBP) (with resistance: MSNA, BF ϩ83.4%; DBP, ϩ23.8%; without resistance: MSNA BF, ϩ19.2%; DBP, Ϫ0.4%, from spontaneous breathing during exercise). These results suggest that inspiratory muscle fatigue induces increases in muscle sympathetic vasomotor outflow and BP during dynamic leg exercise at mild intensity. respiratory muscle; sympathetic outflow; metaboreflex; dynamic leg exercise
Tibetan natives have lived on the Tibetan plateau (altitude ∼4,000 m) for at least 25,000 years, and as such they are adapted to life and reproduction in a hypoxic environment. Recent studies have identified two genetic loci, EGLN1 and EPAS1, that have undergone natural selection in Tibetans, and further demonstrated an association of EGLN1/EPAS1 genotype with hemoglobin concentration. Both genes encode major components of the hypoxia-inducible factor (HIF) transcriptional pathway, which coordinates an organism's response to hypoxia. Patients living at sea level with genetic disease of the HIF pathway have characteristic phenotypes at both the integrative-physiology and cellular level. We sought to test the hypothesis that natural selection to hypoxia within Tibetans results in related phenotypic differences. We compared Tibetans living at sea level with Han Chinese, who are Tibetans' most closely related major ethnic group. We found that Tibetans had a lower hemoglobin concentration, a higher pulmonary ventilation relative to metabolism, and blunted pulmonary vascular responses to both acute (minutes) and sustained (8 h) hypoxia. At the cellular level, the relative expression and hypoxic induction of HIF-regulated genes were significantly lower in peripheral blood lymphocytes from Tibetans compared with Han Chinese. Within the Tibetans, we found a significant correlation between both EPAS1 and EGLN1 genotype and the induction of erythropoietin by hypoxia. In conclusion, this study provides further evidence that Tibetans respond less vigorously to hypoxic challenge. This is evident at sea level and, at least in part, appears to arise from a hyporesponsive HIF transcriptional system.
The purpose of the present study was to examine the changes in maximum voluntary isometric contraction (MVC) in the contralateral untrained limb during unilateral resistance training and detraining, and to examine the factors inducing these changes by means of electrophysiological techniques. Nine healthy males trained their plantar flexor muscles unilaterally 4 day-s x week(-1) for 6 weeks using 3 sets of 10-12 repetitions at 70-75% of one-repetition maximum a day, and detrained for 6 weeks. Progressive unilateral resistance training significantly (P < 0.05) increased MVC, integrated electromyogram (iEMG), and voluntary activation in the trained and contralateral untrained limbs. The changes in MVC after training were significantly correlated with the changes in iEMG in both limbs. No significant changes occurred in MVC, voluntary activation, and iEMG in the contralateral limb after detraining. The changes in MVC after detraining did not correlate with the changes in voluntary activation or iEMG in either limb. Training and detraining did not alter twitch and tetanic peak torques in either limb. These results suggest that the mechanisms underlying cross education of muscular strength may be explained by central neural factors during training, but not solely so during detraining.
The purpose of the present study was to elucidate the influence of intermittent hypobaric hypoxia at rest on endurance performance and cardiorespiratory and hematological adaptations in trained endurance athletes. Twelve trained male endurance runners were assigned to either a hypoxic group (n = 6) or a control group (n = 6). The subjects in the hypoxic group were exposed to a simulated altitude of 4500 m for 90 min, three times a week for 3 weeks. The measurements of 3000 m running time, running time to exhaustion, and cardiorespiratory parameters during maximal exercise test and resting hematological status were performed before (Pre) and after 3 weeks of intermittent hypoxic exposure (Post). These measurements were repeated after the cessation of intermittent hypoxia for 3 weeks (Re). In the control group, the same parameters were determined at Pre, Post, and Re for the subjects not exposed to intermittent hypoxia. The athletes in both groups continued their normal training together at sea level throughout the experiment. In the hypoxic group, the 3000 m running time and running time to exhaustion during maximal exercise test improved. Neither cardiorespiratory parameters to maximal exercise nor resting hematological parameters were changed in either group at Post, whereas oxygen uptake (.V(O2)) during submaximal exercise decreased significantly in the hypoxic group. After cessation of intermittent hypoxia for 3 weeks, the improved 3000 m running time and running time to exhaustion tended to decline, and the decreased .V(O2) during submaximal exercise returned to Pre level. These results suggest that intermittent hypoxia at rest could improve endurance performance and submaximal exercise efficiency at sea level in trained endurance athletes, but these improvements are not maintained after the cessation of intermittent hypoxia for 3 weeks.
You might find this additional info useful... 67 articles, 43 of which you can access for free at: This article cites http://ajpregu.physiology.org/content/301/2/R456.full#ref-list-1 3 other HighWire-hosted articles: This article has been cited by http://ajpregu.physiology.org/content/301/2/R456#cited-by including high resolution figures, can be found at: Updated information and services http://ajpregu.physiology.org/content/301/2/R456.full can be found at: and Comparative Physiology American Journal of Physiology -Regulatory, Integrative about Additional material and information http://www.the-aps.org/publications/ajpregu This information is current as of April 17, 2013. Katayama K, Ishida K, Iwamoto E, Iemitsu M, Koike T, Saito M.Hypoxia augments muscle sympathetic neural response to leg cycling. It was demonstrated that acute hypoxia increased muscle sympathetic nerve activity (MSNA) by using a microneurographic method at rest, but its effects on dynamic leg exercise are unclear. The purpose of this study was to clarify changes in MSNA during dynamic leg exercise in hypoxia. To estimate peak oxygen uptake (V O2 peak), two maximal exercise tests were conducted using a cycle ergometer in a semirecumbent position in normoxia [inspired oxygen fraction (FI O 2 ) ϭ 0.209] and hypoxia (FI O 2 ϭ 0.127). The subjects performed four submaximal exercise tests; two were MSNA trials in normoxia and hypoxia, and two were hematological trials under each condition. In the submaximal exercise test, the subjects completed two 15-min exercises at 40% and 60% of their individual V O2 peak in normoxia and hypoxia. During the MSNA trials, MSNA was recorded via microneurography of the right median nerve at the elbow. During the hematological trials, the subjects performed the same exercise protocol as during the MSNA trials, but venous blood samples were obtained from the antecubital vein to assess plasma norepinephrine (NE) concentrations. MSNA increased at 40% V O2 peak exercise in hypoxia, but not in normoxia. Plasma NE concentrations did not increase at 40% V O2 peak exercise in hypoxia. MSNA at 40% and 60% V O2 peak exercise were higher in hypoxia than in normoxia. These results suggest that acute hypoxia augments muscle sympathetic neural activation during dynamic leg exercise at mild and moderate intensities. They also suggest that the MSNA response during dynamic exercise in hypoxia could be different from the change in plasma NE concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.