Inhibition of inappropriate responses is an essential executive function needed for adaptation to changing environments. In stop-signal tasks, which are often used to investigate response inhibition, subjects make "go" responses while they prepare to stop at a suddenly given "stop" signal. However, the preparatory processes ongoing before response inhibition have rarely been investigated, and it remains unclear how the preparation contributes to response inhibition. In the present study, a stop-signal task was designed so that the extent of the preparation could be estimated using behavioral and neuroimaging measures. Specifically, in addition to the conventional go trials where preparation to stop was required ("uncertain-go" trials), another type of go trial was introduced where a stop-signal was never given and such preparation was unnecessary ("certain-go" trials). An index reflecting the "preparation cost" was then calculated by subtracting the reaction times in the certain-go trials from those in the uncertain-go trials. It was revealed that the stop signal reaction time, a common index used to evaluate the efficiency of response inhibition, decreased as the preparation cost increased, indicating greater preparation supports more efficient inhibition. In addition, imaging data showed that response inhibition recruited frontoparietal regions (the contrast "stop vs uncertain-go") and that preparation recruited most of the inhibition-related frontoparietal regions (the contrast "uncertain-go vs certain-go"). It was also revealed that the inhibition-related activity declined as the preparation cost increased. These behavioral and imaging results suggest preparation makes a complementary contribution to response inhibition during performance of a stop-signal task.
Increasing the reward value of behavioral goals can facilitate cognitive processes required for goal achievement. This facilitation may be accomplished by the dynamic and flexible engagement of cognitive control mechanisms operating in distributed brain regions. It is still not clear, however, what are the characteristics of individuals, situations, and neural activation dynamics that optimize motivation-linked cognitive enhancement. Here we show that highly reward-sensitive individuals exhibited greater improvement of working memory performance in rewarding contexts, but exclusively on trials that were not rewarded. This effect was mediated by a shift in the temporal dynamics of activation within right lateral prefrontal cortex, from a transient to predominantly tonic mode, with an additional anticipatory transient boost. In contexts with intermittent rewards, a strategy of proactive cognitive control may enable globally optimal performance to facilitate reward attainment. Reward-sensitive individuals appear preferentially motivated to adopt this resource-demanding strategy, resulting in paradoxical benefits selectively for nonrewarded events.executive function | personality | working memory | dopamine | mixed blocked/event-related fMRI I n some task situations, successful behavioral performance leads to the potential for a highly rewarding outcome (e.g., gambling games, college entrance exams, sales contests) . When motivational salience is high, the increased value of the behavioral goal to be achieved needs to be translated into an optimal cognitive strategy (1-3). Previous experimental evidence suggests that such a translation does occur, because both cognitive performance and brain activity are enhanced in behavioral situations paired with motivational incentives (e.g., monetary rewards) (4-11). Importantly, these behavioral and neural enhancements have been found to be associated with the potential reward value available on specific trials. However, there is still very little knowledge regarding the specific behavioral situations, neural mechanisms, and individual trait factors that are critical for such enhancement effects.We have postulated a theoretical framework, known as the Dual Mechanisms of Control (DMC; ref. 12), that distinguishes two cognitive control modes, proactive and reactive (Fig. S1A). The former is characterized by sustained active maintenance and/or anticipatory implementation of behavioral goals in the lateral prefrontal cortex (lPFC) (13,14), whereas the latter is characterized by transient, bottom-up updating of goal-relevant information within a wider brain network (15). In previous work, we have demonstrated that the DMC model predicts age-related and incentive-dependent shifts in activation dynamics in the lPFC (16-18). However, a limitation of the prior work has been the lack of a conclusive demonstration that experimental and individual differences effects in cognitive control modes are both functionally mediated by a shift in the activation dynamics within lPFC. In the current...
The contribution of the right inferior frontal cortex to response inhibition has been demonstrated by previous studies of neuropsychology, electrophysiology, and neuroimaging. The inferior frontal cortex is also known to be activated during processing of infrequent stimuli such as stimulus-driven attention. Response inhibition has most often been investigated using the go/no-go task, and the no-go trials are usually given infrequently to enhance prepotent response tendency. Thus, it has not been clarified whether the inferior frontal activation during the go/no-go task is associated with response inhibition or processing of infrequent stimuli. In the present functional magnetic resonance imaging study, we employed not only frequent-go trials but also infrequent-go trials that were presented as infrequently as the no-go trials. The imaging results demonstrated that the posterior inferior frontal gyrus (pIFG) was activated during response inhibition as revealed by the no-go vs. infrequent-go trials, whereas the inferior frontal junction (IFJ) region was activated primarily during processing of infrequent stimuli as revealed by the infrequent-go versus frequent-go trials. These results indicate that the pIFG and IFJ within the inferior frontal cortex are spatially close but are associated with different cognitive control processes in the go/no-go paradigm.
A characteristic marker of impulsive decision-making is the discounting of delayed rewards, demonstrated via choice preferences and choice-related brain activity. However, delay discounting may also arise from how subjective reward value is dynamically represented in the brain when anticipating an upcoming chosen reward. In the current study, brain activity was continuously monitored as human participants freely selected an immediate or delayed primary liquid reward and then waited for the specified delay before consuming it. The ventromedial prefrontal cortex (vmPFC) exhibited a characteristic pattern of activity dynamics during the delay period, as well as modulation during choice, that is consistent with the time-discounted coding of subjective value. The ventral striatum (VS) exhibited a similar activity pattern, but preferentially in impulsive individuals. A contrasting profile of delay-related and choice activation was observed in the anterior PFC (aPFC), but selectively in patient individuals. Multilevel statistical modeling indicated that both vmPFC and aPFC exerted modulatory, but opposite, influences on VS activation. These results link behavioral impulsivity and self-control to dynamically evolving neural representations of future reward value not just during choice, but also post-choice delay periods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.