The brain vasculature maintains brain homeostasis by tightly regulating ionic, molecular, and cellular transport between the blood and the brain parenchyma. These blood-brain barrier (BBB) properties are impediments to brain drug delivery, and brain vascular dysfunction accompanies many neurological disorders. The molecular constituents of brain microvascular endothelial cells (BMECs) and pericytes, which share a basement membrane and comprise the microvessel structure, remain incompletely characterized, particularly in humans. To improve the molecular database of these cell types, we performed RNA sequencing on brain microvessel preparations isolated from snap-frozen human and mouse tissues by laser capture microdissection (LCM). The resulting transcriptome datasets from LCM microvessels were enriched in known brain endothelial and pericyte markers, and global comparison identified previously unknown microvessel-enriched genes. We used these datasets to identify mouse-human species differences in microvessel-associated gene expression that may have relevance to BBB regulation and drug delivery. Further, by comparison of human LCM microvessel data with existing human BMEC transcriptomic datasets, we identified novel putative markers of human brain pericytes. Together, these data improve the molecular definition of BMECs and brain pericytes, and are a resource for rational development of new brain-penetrant therapeutics and for advancing understanding of brain vascular function and dysfunction. The blood-brain barrier (BBB) regulates blood flow, supplies the brain with nutrients, and facilitates clearance of a variety of substances. The BBB is comprised of brain microvascular endothelial cells (BMECs), the principal barrier-forming cell. BMECs are also intimately associated with brain pericytes, mural cells that line the outside of microvessels and are linked to endothelial cells by a shared vascular basement membrane 1. The BBB is required to maintain brain homeostasis, but also prevents clinically relevant doses of many therapeutics from entering the brain 2,3. Brain vascular dysfunction plays a role in several neurological disorders, including some with cellautonomous defects in BMEC or pericyte function 4-7. Due to its role in neurological disorders and important implications for brain drug delivery, the brain vasculature has been the subject of intense research, often focused on identifying mechanisms underlying its unique behavior. Our understanding of brain vascular development, function, dysfunction, and molecular constituents, however, has been advanced largely by mouse models. The scarcity of human brain tissue and low abundance of brain vascular cells has limited molecular profiling of the human brain vasculature. Improved molecular understanding of human BMECs and pericytes could aid in the development of new BBB-penetrant therapeutics and advance new hypotheses about mechanisms of brain vascular dysfunction in disease. Mouse brain vascular cells have previously been isolated and transcriptionally prof...
Brain mural cells, including pericytes and vascular smooth muscle cells, are important for vascular development, blood-brain barrier function, and neurovascular coupling, but the molecular characteristics of human brain mural cells are incompletely characterized. Single cell RNA-sequencing (scRNA-seq) is increasingly being applied to assess cellular diversity in the human brain, but the scarcity of mural cells in whole brain samples has limited their molecular profiling. Here, we leverage the combined power of multiple independent human brain scRNA-seq datasets to build a transcriptomic database of human brain mural cells. We use this combined dataset to determine human-mouse species differences in mural cell transcriptomes, culture-induced dedifferentiation of human brain pericytes, and human mural cell organotypicity, with several key findings validated by RNA fluorescence in situ hybridization. Together, this work improves knowledge regarding the molecular constituents of human brain mural cells, serves as a resource for hypothesis generation in understanding brain mural cell function, and will facilitate comparative evaluation of animal and in vitro models.
Endothelial cells (ECs) in the central nervous system (CNS) acquire their specialized blood-brain barrier (BBB) properties in response to extrinsic signals, with Wnt/β-catenin signaling coordinating multiple aspects of this process. Our knowledge of CNS EC development has been advanced largely by animal models, and human pluripotent stem cells (hPSCs) offer the opportunity to examine BBB development in an in vitro human system. Here we show that activation of Wnt signaling in hPSC-derived naïve endothelial progenitors, but not in matured ECs, leads to robust acquisition of canonical BBB phenotypes including expression of GLUT-1, increased claudin-5, decreased PLVAP and decreased permeability. RNA-seq revealed a transcriptome profile resembling ECs with CNS-like characteristics, including Wnt-upregulated expression of LEF1, APCDD1, and ZIC3. Together, our work defines effects of Wnt activation in naïve ECs and establishes an improved hPSC-based model for interrogation of CNS barriergenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.