In this prospective multicenter, observational cohort study of patients presenting at the ED for AHF, early treatment with intravenous loop diuretics was associated with lower in-hospital mortality. (Registry focused on very early presentation and treatment in emergency department of acute heart failure syndrome; UMIN000014105).
The application of a new gene-based strategy for sequencing the wheat mitochondrial genome shows its structure to be a 452 528 bp circular molecule, and provides nucleotide-level evidence of intra-molecular recombination. Single, reciprocal and double recombinant products, and the nucleotide sequences of the repeats that mediate their formation have been identified. The genome has 55 genes with exons, including 35 protein-coding, 3 rRNA and 17 tRNA genes. Nucleotide sequences of seven wheat genes have been determined here for the first time. Nine genes have an exon–intron structure. Gene amplification responsible for the production of multicopy mitochondrial genes, in general, is species-specific, suggesting the recent origin of these genes. About 16, 17, 15, 3.0 and 0.2% of wheat mitochondrial DNA (mtDNA) may be of genic (including introns), open reading frame, repetitive sequence, chloroplast and retro-element origin, respectively. The gene order of the wheat mitochondrial gene map shows little synteny to the rice and maize maps, indicative that thorough gene shuffling occurred during speciation. Almost all unique mtDNA sequences of wheat, as compared with rice and maize mtDNAs, are redundant DNA. Features of the gene-based strategy are discussed, and a mechanistic model of mitochondrial gene amplification is proposed.
To elucidate the genetic mechanism of flowering in wheat, we performed expression, mutant and transgenic studies of flowering-time genes. A diurnal expression analysis revealed that a flowering activator VRN1, an APETALA1/FRUITFULL homolog in wheat, was expressed in a rhythmic manner in leaves under both long-day (LD) and short-day (SD) conditions. Under LD conditions, the upregulation of VRN1 during the light period was followed by the accumulation of FLOWERING LOCUS T (FT) transcripts. Furthermore, FT was not expressed in a maintained vegetative phase (mvp) mutant of einkorn wheat (Triticum monococcum), which has null alleles of VRN1, and never transits from the vegetative to the reproductive phase. These results suggest that VRN1 is upstream of FT and upregulates the FT expression under LD conditions. The overexpression of FT in a transgenic bread wheat (Triticum aestivum) caused extremely early heading with the upregulation of VRN1 and the downregulation of VRN2, a putative repressor gene of VRN1. These results suggest that in the transgenic plant, FT suppresses VRN2 expression, leading to an increase in VRN1 expression. Based on these results, we present a model for a genetic network of flowering-time genes in wheat leaves, in which VRN1 is upstream of FT with a positive feedback loop through VRN2. The mvp mutant has a null allele of VRN2, as well as of VRN1, because it was obtained from a spring einkorn wheat strain lacking VRN2. The fact that FT is not expressed in the mvp mutant supports the present model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.