Adult T cell leukemia/lymphoma (ATL) is a peripheral T cell neoplasm of largely unknown genetic basis, associated with human T cell leukemia virus type-1 (HTLV-1) infection. Here we describe an integrated molecular study in which we performed whole-genome, exome, transcriptome and targeted resequencing, as well as array-based copy number and methylation analyses, in a total of 426 ATL cases. The identified alterations overlap significantly with the HTLV-1 Tax interactome and are highly enriched for T cell receptor-NF-κB signaling, T cell trafficking and other T cell-related pathways as well as immunosurveillance. Other notable features include a predominance of activating mutations (in PLCG1, PRKCB, CARD11, VAV1, IRF4, FYN, CCR4 and CCR7) and gene fusions (CTLA4-CD28 and ICOS-CD28). We also discovered frequent intragenic deletions involving IKZF2, CARD11 and TP73 and mutations in GATA3, HNRNPA2B1, GPR183, CSNK2A1, CSNK2B and CSNK1A1. Our findings not only provide unique insights into key molecules in T cell signaling but will also guide the development of new diagnostics and therapeutics in this intractable tumor.
Antioxidative activities of 28 synthetic peptides, which were designed based on an antioxidative peptide (Leu-Leu-Pro-His-His) derived from proteolytic digests of a soybean protein, against the peroxidation of linoleic acid in an aqueous system were measured by the ferric thiocyanate method. The results for the hydroperoxide levels derived from linoleic acid agreed with those obtained by reversed-phase high-performance liquid chromatography. The deletion of the C-terminal His decreased the activity, whereas the deletion of the N-terminal Leu had no effect. In the peptide sequence, His and Pro played important roles in the antioxidative activity and, among the peptides tested, Pro-His-His was the most antioxidative. The activity decreased on substitution of the second His with d-His. Introduction of Tyr to the positions of Pro or His did not increase the activities of the corresponding peptides. Antioxidative peptides showed synergistic effects with nonpeptidic antioxidants as observed in soybean protein hydrolysates. The magnitude of the effects, however, did not correlate with the antioxidative activities of the peptides. Keywords: Antioxidative peptides; antioxidant; soybean protein hydrolysate; ferric thiocyanate method; synergistic effect
The properties of 22 synthetic peptides containing histidine, which were designed on the basis of the antioxidative peptide (Leu-Leu-Pro-His-His) derived from proteolytic digests of a soybean protein, were examined with regard to their antioxidative activity against the peroxidation of linoleic acid and the scavenging effects on active oxygen and free radical species. The antioxidative activities of these peptides in an emulsion oxidation system using 2,2'-azobis(2-amidinopropane) dihydrochloride as a radical initiator correlated well within an aqueous system. Although the histidine-containing peptides had a quenching activity on singlet oxygen, they did not show antioxidative activity in an 2,2'-azobis(2,4-dimethylvaleronitrile)-induced oxidation system or scavenging effects on 1,1-diphenyl-2-picrylhydrazyl radical and superoxide. The metal-ion chelating activities and the hydrophobicities of these peptides showed no direct correlation with their antioxidative activities. Leu-Leu-Pro-His-His was modified with a hydroxyl radical in an aqueous ethanol system during the peroxidation of linoleic acid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.