Fibroblast activation protein (FAP), which promotes tumor growth and progression, is overexpressed in cancer-associated fibroblasts of many human epithelial cancers. Because of its low expression in normal organs, FAP is an excellent target for theranostics. In this study, we used radionuclides with relatively long half-lives, 64 Cu (half-life, 12.7 h) and 225 Ac (half-life, 10 d), to label FAP inhibitors (FAPIs) in mice with human pancreatic cancer xenografts. Methods: Male nude mice (body weight, 22.5 ± 1.2 g) were subcutaneously injected with human pancreatic cancer cells (PANC-1, n 5 12; MIA PaCa-2, n 5 8). Tumor xenograft mice were investigated after the intravenous injection of 64 Cu-FAPI-04 (7.21 ± 0.46 MBq) by dynamic and delayed PET scans (2.5 h after injection). Static scans 1 h after the injection of 68 Ga-FAPI-04 (3.6 ± 1.4 MBq) were also acquired for comparisons using the same cohort of mice (n 5 8). Immunohistochemical staining was performed to confirm FAP expression in tumor xenografts using an FAP-α-antibody. For radioligand therapy, 225 Ac-FAPI-04 (34 kBq) was injected into PANC-1 xenograft mice (n 5 6). Tumor size was monitored and compared with that of control mice (n 5 6). Results: Dynamic imaging of 64 Cu-FAPI-04 showed rapid clearance through the kidneys and slow washout from tumors. Delayed PET imaging of 64 Cu-FAPI-04 showed mild uptake in tumors and relatively high uptake in the liver and intestine. Accumulation levels in the tumor or normal organs were significantly higher for 64 Cu-FAPI-04 than for 68 Ga-FAPI-04, except in the heart, and excretion in the urine was higher for 68 Ga-FAPI-04 than for 64 Cu-FAPI-04. Immunohistochemical staining revealed abundant FAP expression in the stroma of xenografts. 225 Ac-FAPI-04 injection showed significant tumor growth suppression in the PANC-1 xenograft mice, compared with the control mice, without a significant change in body weight. Conclusion: This proof-of-concept study showed that 64 Cu-FAPI-04 and 225 Ac-FAPI-04 could be used in theranostics for the treatment of FAP-expressing pancreatic cancer. α-therapy targeting FAP in the cancer stroma is effective and will contribute to the development of a new treatment strategy.
Purpose Fibroblast activation protein (FAP), which has high expression in cancer-associated fibroblasts of epithelial cancers, can be used as a theranostic target. Our previous study used 64Cu and 225Ac-labelled FAP inhibitors (FAPI-04) for a FAP-expressing pancreatic cancer xenograft imaging and therapy. However, the optimal therapeutic radionuclide for FAPI needs to be investigated further. In this study, we evaluated the therapeutic effects of beta-emitter (177Lu)-labelled FAPI-46 and alpha-emitter (225Ac)-labelled FAPI-46 in pancreatic cancer models. Methods PET scans (1 h post injection) were acquired in PANC-1 xenograft mice (n = 9) after the administration of [18F]FAPI-74 (12.4 ± 1.7 MBq) for the companion imaging. The biodistribution of [177Lu]FAPI-46 and [225Ac]FAPI-46 were evaluated in the xenograft model (total n = 12). For the determination of treatment effects, [177Lu]FAPI-46 and [225Ac]FAPI-46 were injected into PANC-1 xenograft mice at different doses: 3 MBq (n = 6), 10 MBq (n = 6), 30 MBq (n = 6), control (n = 4) for [177Lu]FAPI-46, and 3 kBq (n = 3), 10 kBq (n = 2), 30 kBq (n = 6), control (n = 7) for [225Ac]FAPI-46. Tumour sizes and body weights were followed. Results [18F]FAPI-74 showed rapid clearance by the kidneys and high accumulation in the tumour and intestine 1 h after administration. [177Lu]FAPI-46 and [225Ac]FAPI-46 also showed rapid clearance by the kidneys and relatively high accumulation in the tumour at 3 h. Both [177Lu]FAPI-46 and [225Ac]FAPI-46 showed tumour-suppressive effects, with a mild decrease in body weight. The treatment effects of [177Lu]FAPI-46 were relatively slow but lasted longer than those of [225Ac]FAPI-46. Conclusion This study suggested the possible application of FAPI radioligand therapy in FAP-expressing pancreatic cancer. Further evaluation is necessary to find the best radionuclide with shorter half-life, as well as the combination with therapies targeting tumour cells directly.
Turbulent structures in stably stratified shear layers are studied with direct numerical simulation. Flow visualization confirms the existence of hairpin vortices and highly elongated structures with positive and negative velocity fluctuations, whose streamwise lengths divided by the layer thickness are $O(10^{0})$ and $O(10^{1})$, respectively. The flow at the wavelength related to these structures makes a large contribution to turbulent kinetic energy. These structures become prominent in late time, but with small buoyancy Reynolds numbers indicating suppression of turbulent mixing. Active turbulent mixing associated with the hairpin vortices, however, does occur. The structures and the vertical profile of the integral shear parameter show connections between stable stratified shear layers and wall-bounded shear flows.
Localized turbulence bounded by non-turbulent flow in a uniformly stratified environment is studied with direct numerical simulations of stably stratified shear layers. Of particular interest is the turbulent/non-turbulent interfacial (TNTI) layer, which is detected by identifying the turbulent region in terms of its potential vorticity. Fluid near the outer edge of the turbulent region gains potential vorticity and becomes turbulent by diffusion arising from both viscous and molecular effects. The flow properties near the TNTI layer change depending on the buoyancy Reynolds number near the interface, $Re_{bI}$. The TNTI layer thickness is approximately 13 times the Kolmogorov length scale for large $Re_{bI}$ ($Re_{bI}\gtrsim 30$), consistent with non-stratified flows, whereas it is almost equal to the vertical length scale of the stratified flow, $l_{vI}=l_{hI}Re^{-1/2}$ (here $l_{hI}$ is the horizontal length scale near the TNTI layer, and $Re$ is the Reynolds number), in the low-$Re_{bI}$ regime ($Re_{bI}\lesssim 2$). Turbulent fluid is vertically transported towards the TNTI layer when $Re_{bI}$ is large, sustaining the thin TNTI layer with large buoyancy frequency and mean shear. This sharpening effect is weakened as $Re_{bI}$ decreases and eventually becomes negligible for very low $Re_{bI}$. Overturning motions occur near the TNTI layer for large $Re_{bI}$. The dependence on buoyancy Reynolds number is related to the value of $Re_{bI}$ near the TNTI layer, which is smaller than the value deep inside the turbulent core region. An imprint of the internal gravity waves propagating in the non-turbulent region is found for vorticity within the TNTI layer, inferring an interaction between turbulence and internal gravity waves. The wave energy flux causes a net loss of the kinetic energy in the turbulent core region bounded to the TNTI layer, and the amount of kinetic energy extracted from the turbulent region by internal gravity waves is comparable to the amount dissipated in the turbulent region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.