Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. Abstract This paper studies the incentive compatibility of solutions to generalized indivisible good allocation problems introduced by Sönmez (1999), which contain the well-known marriage problems (Gale and Shapley, 1962) and the housing markets (Shapley and Scarf, 1974) as special cases. In particular, I consider the vulnerability to manipulation of solutions that are individually rational and Pareto optimal. By the results of Sönmez (1999) and Takamiya (2003), any individually rational and Pareto optimal solution is strategy-proof if and only if the strong core correspondence is essentially single-valued, and the solution is a strong core selection. Given this fact, this paper examines the equilibrium outcomes of the preference revelation games when the strong core correspondence is not necessarily essentially single-valued. I show that for the preference revelation games induced by any solution which is individually rational and Pareto optimal, the set of strict strong Nash equilibrium outcomes coincides with the strong core. This generalizes one of the results by Shin and Suh (1996) obtained in the context of the marriage probelms. Further, I examine the other preceding results proved for the marriage problems (Alcalde, 1996;Shin and Suh, 1996;Sönmez, 1997) to find that none of those results are generalized to the general model. JEL Classification-C71, C72, C78, D71, D78. Keywords-generalized indivisible good allocation problem, preference revelation game, strict strong Nash equilibrium, strong core. * This paper is based on Chapter 4 of my dissertation submitted to Hokkaido University. I am grateful to Tayfun Sönmez for introducing some of his works related to this paper. Also I am indebted to Takuma Wakayama, Eiichi Miyagawa, Ken-ichi Shimomura, Ryo-ichi Nagahisa, Takashi Shimizu for comments, and in particular to Tomoichi Shinotsuka for detailed comments and discussion. And I thank seminar participants at Otaru University of Commerce, RIEB (Kobe University) and Kansai University. All errors are my own responsibility.
Terms of use:
Documents in