With the rapid development of urbanization, the construction industry consumes a lot of cement and produces a large amount of construction waste. To overcome this situation, the rational use of recycled aggregate produced from waste concrete is one of solutions. In some countries, the building industry has approved the use of recycled coarse aggregates in concrete, with some limits. However, practically all existing standards and regulations prohibit the use of recycled fine aggregate (RFA) in concrete. Therefore, study on improving the performance of RFA concrete is vital. In this study, the effects of fly ash and GGBS on concrete with RFA were investigated. Compressive strength, pore structure, drying shrinkage and accelerated carbonation were tested. The correlation between the pore structure and properties of concrete was analyzed. The results show that adding fly ash and GGBS to RFA concrete increased its compressive strength, modified pore structure, reduced drying shrinkage, and even achieved higher compressive strength and lower drying shrinkage than normal concrete. The compressive strength was mainly affected by the capillary pores, and the carbonation was mainly affected by the gel pores.
The unburned carbon in fly ash inhibits the performance of concrete. A device using the flotation method to remove unburned carbon in fly ash was developed, and the operating condition of the device was experimentally examined. According to the results, the device was able to remove unburnt carbon from fly ash by using the installed micro bubble nozzles and a whirl-type pump. The removal efficiency of unburnt carbon improved when prior forced stirring was carried out by a concrete mixer for 3 min, and a scavenger was added into the fly ash slurry at a density of about 60 wt%. It has also been confirmed that the method of circulating water is more effective than the method of not circulating water. The elements of the modified fly ash slurry (MFAS) have also been experimentally confirmed as not being too different from untreated fly ash, except for the fact that the content of unburned carbon is reduced. The compressive strength and drying shrinkage characteristics of concrete made with MFAS were investigated. The use of MFAS will reduce the performance of concrete compared to that of ordinary concrete. This shows that in a certain range (15–30%), the influence of MFAS on drying shrinkage is constant. The static elastic modulus and dynamic elastic modulus were also investigated. The above results show that the application of MFAS prepared by the flotation method to concrete is feasible.
Environment-conscious life-cycle design (eco-life-cycle-design) is a comprehensive method to reduce the environmental load and improve materials efficiency in the total life cycle of closed loop of production, in service, demolition, recycle/reuse , reproduction of building materials, components and /or systems. Special attention is paid to the compatibility of long service life with environmental harmony (ecobalance performance). This paper proposes and discusses this eco-life-cycle-design for new external thermal insulation systems using new short-cut fiber reinforced cement composites (FRC) as exterior materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.