Many variants of SARS-CoV-2 have emerged around the world. It is therefore important to understand its global viral evolution and the corresponding mutations associated with transmissibility and severity. In this study, we analyzed 112 whole genome sequences of SARS-CoV-2 collected from patients at Juntendo University Hospital in Tokyo and the genome data from entire Japan deposited in Global Initiative on Sharing Avian Influenza Data (GISAID) to examine the relationship of amino acid changes with the transmissibility and the severity of each strain/lineage. We identified 12 lineages, including B.1.1.284, B.1.1.214, R.1, AY.29, and AY.29.1, which were prevalent specifically in Japan. B.1.1.284 was most frequently detected in the second wave, but B.1.1.214 became the predominant lineage in the third wave, indicating that B.1.1.214 has a higher transmissibility than B.1.1.284. The most prevalent lineage during the fourth and fifth wave was B.1.1.7 and AY.29, respectively. In regard to the severity of identified lineages, B.1.1.214 was significantly lower than the reference lineage, B.1.1.284. Analysis of the genome sequence and other traits of each lineage/strain revealed the mutations in S, N, and NSPs that increase the transmissibility and/or severity. These mutations include S: M153T, N: P151L, NSP3: S543P, NSP5: P108S, and NSP12: A423V in B.1.1.284; S: W152L and E484K in R.1; S: H69del, V70del, and N501Y in the Alpha strain; S: L452R, T478K, and P681R in the Delta strain. Furthermore, it is suggested that the transmissibility of B.1.1.214 could be enhanced by the mutations N: M234I, NSP14: P43L, and NSP16: R287I. To address the issue of the virus evolution, it is necessary to continuously monitor the genomes of SARS-CoV-2 and analyze the effects of mutations for developing vaccines and antiviral drugs effective against SARS-CoV-2 variants.
BackgroundPrevious studies have shown that patients with immunosuppression tend to have longer-lasting SARS-CoV-2 infections and a number of mutations were observed during the infection period. However, these studies were, in general, conducted longitudinally. Mutation evolution among groups of patients with immunosuppression have not been well studied, especially among Asian populations.MethodsOur study targeted a nosocomial cluster of SARS-CoV-2 infection in a Japanese medical center during Delta surge (AY.29 sublineage), involving ward nurses and inpatients. Whole-genome sequencing analyses were performed to examine mutation changes. Haplotype and minor variant analyses were furtherly performed to detect the mutations on the viral genomes in detail. In addition, sequences of the first wild-type strain hCoV-19/Wuhan/WIV04/2019 and AY.29 wild-type strain hCoV-19/Japan/TKYK15779/2021 were used as references to assess the phylogenetical development of this cluster.ResultsA total of 6 nurses and 14 inpatients were identified as a nosocomial cluster from September 14 through 28, 2021. All were Delta variant (AY.29 sublineage) positive. 92.9% of infected patients (13 out of 14) were either cancer patients and/or receiving immunosuppressive or steroid treatments. Compared to AY.29 wild type, a total of 12 mutations were found in the 20 cases. Haplotype analysis found one index group of eight cases with F274F (N) mutation and 10 other haplotypes with one to three additional mutations. Furthermore, we found that cases with more than three minor variants were all cancer patients under immunosuppressive treatments. The phylogenetical tree analysis, including 20 nosocomial cluster-associated viral genomes, the first wild-type strain and the AY.29 wild-type strain as references, indicated the mutation development of the AY.29 virus in this cluster.ConclusionOur study of a nosocomial SARS-CoV-2 cluster highlights mutation acquisition during transmission. More importantly, it provided new evidence emphasizing the need to further improve infection control measures to prevent nosocomial infection among immunosuppressed patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.