The relationship of gastric hypermotility to mucosal hemodynamics, lipid peroxidation and vascular permeability changes was investigated in the pathogenesis of indomethacin-induced gastric lesions in rats. Subcutaneous administration of indomethacin (25 mg/kg) produced an increase in both the amplitude and frequency of stomach contraction from 30 min after treatment, resulting in hemorrhagic damage 2 h later. Gastric mucosal blood flow measured by a Laser flowmetry showed oscillatory fluctuations under hypercontractile states: a decrease during contraction followed by an increase during relaxation. Mucosal lipid peroxidation and vascular permeability were significantly increased with time after indomethacin treatment, and these changes preceded the appearance of hemorrhagic damage. All these events were prevented when gastric hypermotility was inhibited by atropine or 16,16-dimethyl prostaglandin E2. Pretreatment of the animals with allopurinol and hydroxyurea or continuous infusion of superoxide dismutase and dimethyl sulfoxide during a test period also attenuated these functional changes and mucosal lesions induced by indomethacin, without affecting the motility response. We conclude that oxygen free radicals may play a role in the development of mucosal lesions associated with gastric hypermotility in indomethacin-treated rats.
ABSTRACT-We have examined the effect of orally administered capsaicin on gastric motility in the rat to investigate a possible relationship between motility change and cytoprotection induced by this agent. Capsaicin, given orally (1-30 mg/kg), dosedependently inhibited hemorrhagic band-like lesions induced by ethanol (60% in 150 mM HQ. This protection was significantly mitigated by desensitization of afferent neurons following capsaicin pretreatment 2 weeks before the experiment, and it was also significantly attenuated by prior administration of indomethacin, but not by spantide. Intragastric administration of capsaicin (30 mg/kg) significantly inhibited gastric motility and increased the mucosal blood flow, but had no effect on the transmucosal potential difference of the stomach. These functional changes induced by capsaicin were also less marked in the afferent neuronal desensitized rat, and they were significantly attenuated by indomethacin but not by spantide. These results suggest that the mucosal protection by intragastric capsaicin may be associated with the inhibition of gastric motility and the increase of mucosal blood flow. These responses may be induced by activation of primary afferent neurons which are probably sensitized by endogenous prostaglandins.
The role of capsaicin-sensitive sensory nerves in gastric mucosal blood flow (GMBF) responses to mild irritants was investigated in the rat stomach mounted on a lucite chamber using hypertonic NaCl and 0.2 N HCl. Exposure of the mucosa to hypertonic NaCl (0.5, 0.75, 1 M) for 10 min caused a reduction in the transmucosal potential difference (PD) in a concentration-related manner, followed by an increase of luminal pH and GMBF. In contrast, mucosal application of 0.2 N HCl caused no or little change in PD and pH, but increased GMBF significantly. Functional ablation of capsaicin-sensitive sensory nerves significantly inhibited the increase of GMBF after exposure to these irritants, although the PD and pH responses induced by 1 M NaCl remained unaltered by this treatment. Pretreatment with indomethacin (5 mg/kg, subcutaneously) significantly attenuated the GMBF responses to 1 M NaCl and 0.2 N HCl and inhibited the increase of pH caused by 1 M NaCl. Mucosal application of capsaicin (0.1 mg/ml for 10 min) produced an increase of GMBF without being accompanied by change in PD and pH, and this effect was significantly blocked by either indomethacin or chemical deafferentation. These results suggest that capsaicin-sensitive sensory nerves as well as endogenous prostaglandins may be involved in the mechanism of GMBF responses induced by mild irritants, and the latter might sensitize these nerves to mucosal irritation. PD reduction may be obligatory for pH but not GMBF responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.