We evaluated the in vitro development of porcine zygotes that were cultured in a novel culture medium, porcine zygote medium (PZM), under different conditions and compared to in vivo development. The viability of these zygotes to full term after culture was also evaluated by embryo transfer to recipients. Porcine single-cell zygotes were collected from gilts on Day 2 after hCG injection. Culture of zygotes in PZM containing 3 mg/ml of BSA (PZM-3) produced better results in terms of proportion of Day 6 blastocysts, Day 8 hatching rate, and numbers of inner cell mass (ICM) cells and total cells in Day 8 embryos than that in North Carolina State University (NCSU)-23 medium. In culture with PZM-3, embryo development was optimized in an atmosphere of 5% CO2:5% O2:90% N2 compared to 5% CO2 in air. The ICM and total cell numbers in Day 6 embryos cultured in PZM-3 or in PZM-3 in which BSA was replaced with 3 mg/ml of polyvinyl alcohol (PZM-4) were also greater than those of NCSU-23 but less than those developed in vivo. However, no difference was found in the ratio of ICM to total cells among embryos developed in PZM-3, PZM-4, or in vivo. When the Day 6 embryos that developed in PZM-4 (99 embryos) or in vivo (100 embryos) were each transferred into six recipients, no difference was found in the farrowing rate (83.3% for both treatments) and in the number of piglets born (33 and 42 piglets, respectively). Our results indicate that porcine zygotes can develop into blastocysts in a chemically defined medium and to full term by transfer to recipients after culture.
Abstract. We have previously indicated that porcine blastocysts can be produced by in vitro fertilization (IVF) and culture (IVC) in chemically defined porcine gamete medium (PGM) and porcine zygote medium (PZM)-5, respectively, In the present study, the effects of basic media and macromolecular components on in vitro maturation (IVM) were investigated to develop a defined system for in vitro embryo production using a single basic medium through IVM, IVF and IVC. Porcine immature oocytes were matured in porcine oocyte medium (POM) or modified North Carolina State University (mNCSU) 37, which were supplemented with either 10% (v/v) porcine follicular fluid (pFF) or 3 mg/ml polyvinyl alcohol (PVA) as a macromolecular component (designated POM+pFF, POM+PVA, mNCSU37+pFF and mNCSU37+PVA). In the maturation with mNCSU37+PVA, the percentages of oocytes that reached the metaphase II stages were significantly lower than those in the other treatments. Following IVM with the above media, oocytes were treated with an electrical stimulus and cycloheximide for parthenogenetic activation and were cultured in PZM-5 for 5 days. The rates of cleavage and blastocyst formation of parthenogenetic oocytes were significantly lowered for maturation with mNCSU37+PVA compared with the other treatments, while there were no significant differences in the total numbers of cells in blastocysts among the treatments. Following IVF and IVC, the rates of penetration, male pronucleus formation, cleavage and blastocyst formation were significantly lower when oocytes were matured in mNCSU37+PVA than in other maturation media. The normal fertilization rate was significantly higher in POM+PVA compared with the other treatments, although the total number of cells in blastocysts was reduced with the addition of PVA to both POM and mNCSU37 compared with pFF supplementation. These results demonstrate that porcine blastocysts can be produced by the defined system using a single basic medium. Key words: Defined system, In vitro production (IVP), Maturation, Porcine embryo, Porcine zygote medium (PZM) (J. Reprod. Dev. 54: [208][209][210][211][212][213] 2008) he establishment of an in vitro production (IVP) system for preimplantation embryos that can develop to full term after transfer will contribute to a better understanding of the physiology of embryonic development in early pregnancy and the control of animal reproduction, including embryo transfer, transgenesis and cloning [1]. Numerous studies have investigated the ability of porcine oocytes and embryos to develop in vitro using a wide variety of culture media [2][3][4][5][6][7]. Recently, we developed a chemically defined medium (porcine zygote medium: PZM) for in vitro culture (IVC) of porcine zygotes based on the composition of pig oviduct fluid [8]. Moreover, we established a chemically defined system for in vitro fertilization (IVF) of porcine in vitro-matured oocytes using porcine gamete medium (PGM), modified from PZM, as a basic medium [9], and the in vivo viability of blastocysts produced i...
To further develop defined conditions for in vitro fertilization (IVF) and in vitro culture (IVC) of in vitro-matured porcine oocytes, we evaluated the effects of theophylline, adenosine, and cysteine in a chemically defined medium during IVF. Viability to full term of in vitro-produced blastocysts after IVF and IVC in chemically defined medium was also investigated by embryo transfer to recipients. A chemically defined medium, porcine gamate medium (PGM), was modified from porcine zygote medium (PZM-4), which was previously established. PGM was used as a basal medium for IVF and PZM-4 was for the culture of presumptive zygotes. Addition of 2.5 mM theophylline to PGM significantly increased the percentage of male pronuclear formation compared with controls (no addition). Addition of 1 microM adenosine to PGM supplemented either with or without 2.5 mM theophylline significantly reduced the number of penetrated spermatozoa compared with controls (no addition of adenosine). Supplementation with 0.2 microM cysteine in PGM containing both 2.5 mM theophylline and 1 microM adenosine further increased the percentage of development to the blastocyst stage, compared with no supplementation of cysteine, but there was no difference in fertilization parameters, such as monospermy and pronuclear formation, regardless of presence or absence of theophylline and adenosine. When Day 5 blastocysts were transferred into four recipients (20-25 blastocysts per recipient), all recipients became pregnant and farrowed a total of 21 live piglets. The present results clearly demonstrate that porcine blastocysts can be produced by IVF and IVC in chemically defined media and that they can develop to full term after embryo transfer.
There have been intensive attempts to establish reliable in vitro maturation (IVM) and fertilization (IVF) methods in pigs. Although a great deal of progress has been made, current IVM-IVF systems still suffer from a low rate and poor quality of in vitro produced embryos . In this review, we will review the recent studies about IVM-IVF of porcine oocytes and the in vitro culture (IVC) system, especially modified in vitro production (IVP) system that produces high quality of porcine blastocysts. We then try to suggest practical ways to solve the problems mentioned above in the pigs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.