The activation of caspases represents a crucial turning point during a batch or a fed-batch culture of mammalian cells. It not only affects the quantity but also the quality of the recombinant glycoprotein produced. In this study, the activation of various caspases, the release of intracellular sialidase and the changes in sialylation pattern of a recombinant product, erythropoietin (EPO), in the culture medium were analyzed in both batch and fed-batch cultures. In both setups, all caspase activities peaked at the culture time point at which decline of cell viability was most pronounced. In addition, the release of intracellular lactate dehydrogenase (LDH) was also tracked during these cultures. The increase in LDH activity in the medium coincided with the increase of intracellular caspase activities, the release of sialidase and the observed decline in cell viability, suggesting that the LDH activity in the medium can be used as an indirect indicator of apoptotic cell death in bioreactors. Isoelectric focusing (IEF) coupled with double blotting was employed to analyze the changes in sialylation pattern of the recombinant EPO. This assay resulted in a prompt resolution of secreted EPO isoforms in a time course format. IEF profile of batch culture showed relatively consistent product sialylation compared to fed-batch culture, which showed gradual band shifts towards the isoforms with fewer sialic acid as the culture progressed. These data provided a guideline for the optimal time point to terminate the culture and collect products in batch and fed-batch cultures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.