Microcin J25 is the archetype of a growing class of bacterial ribosomal peptides possessing a knotted topology (lasso peptides). It consists of an eight‐residue macrolactam ring through which the C‐terminal tail is threaded. It is biosynthesized as a precursor that is processed by two maturation enzymes (McjB/McjC). Insights into the mechanism of microcin J25 biosynthesis have been provided previously by mutagenesis of the precursor peptide in vivo. In this study we have demonstrated distinct functions of McjB and McjC in vitro for the first time, based on the detection of reaction intermediates. McjB was characterized as a new ATP‐dependent cysteine protease, whereas McjC was confirmed to be a lactam synthetase. The two enzymes were functionally interdependent, likely forming a structural complex. Their substrate preference was directly investigated with the aid of mutated precursor peptides. Depending on the substitutions, microcin J25 variants with either a lasso or branched‐cyclic topology could be generated in vitro.
Microcin J25 is a potent antibacterial peptide produced by Escherichia coli AY25. It displays a lasso structure, which consists of a knot involving an N-terminal macrolactam ring through which the C-terminal tail is threaded and sterically trapped. In this study, we rationally designed and performed site-specific mutations in order to pinpoint the sequence determinants of the lasso topology. Structures of the resulting variants were analysed by a combination of methods (mass spectrometry, NMR spectroscopy, enzymatic digestion), and correlated to the antibacterial activity. The selected mutations resulted in the production of branched-cyclic or lasso variants. The C-terminal residues below the ring (Tyr20, Gly21) and the size of the macrolactam ring were revealed to be critical for both the lasso scaffold and bioactivity, while shortening the loop region (Tyr9-Ser18) or extending the C-terminal tail below the ring did not alter the lasso structure, but differentially affected the antibacterial activity. These results provide new insights for the bioengineering of antibacterial agents using a lasso peptide as template.
Certain guanine-rich sequences have an inherent propensity to form G-quadruplex (G4) structures. G4 structures are e.g. involved in telomere protection and gene regulation. However, they also constitute obstacles during replication if they remain unresolved. To overcome these threats to genome integrity, organisms harbor specialized G4 unwinding helicases. In Schizosaccharomyces pombe, one such candidate helicase is Pfh1, an evolutionarily conserved Pif1 homolog. Here, we addressed whether putative G4 sequences in S. pombe can adopt G4 structures and, if so, whether Pfh1 can resolve them. We tested two G4 sequences, derived from S. pombe ribosomal and telomeric DNA regions, and demonstrated that they form inter- and intramolecular G4 structures, respectively. Also, Pfh1 was enriched in vivo at the ribosomal G4 DNA and telomeric sites. The nuclear isoform of Pfh1 (nPfh1) unwound both types of structure, and although the G4-stabilizing compound Phen-DC3 significantly enhanced their stability, nPfh1 still resolved them efficiently. However, stable G4 structures significantly inhibited adenosine triphosphate hydrolysis by nPfh1. Because ribosomal and telomeric DNA contain putative G4 regions conserved from yeasts to humans, our studies support the important role of G4 structure formation in these regions and provide further evidence for a conserved role for Pif1 helicases in resolving G4 structures.
A xyloglucan-specific endo-1,4β-glucanase (XcXGHA) from Xanthomonas citri pv. mangiferaeindicae has been cloned, expressed in Escherichia coli, purified and characterised. The XcXGHA enzyme belongs to CAZy family GH74 and has catalytic site residues conserved with other xyloglucanases in this family. At its optimal reaction conditions, pH 7.0 and 40 °C, the enzyme has a k cat/K M value of 2.2 × 10(7) min(-1) M(-1) on a tamarind seed xyloglucan substrate. XcXGHA is relatively stable within a broad pH range (pH 4-9) and up to 50 °C (t 1/2, 50 °C of 74 min). XcXGHA is proven to be xyloglucan-specific, and a glycan microarray study verifies that XcXGHA catalyses cleavage of xyloglucan extracted from both monocot and dicot plant species. The enzyme catalyses hydrolysis of tamarind xyloglucan in a unique way by cleaving XXXG into XX and XG (X is xylosyl-substituted glucose; G is unsubstituted glucose), is able to degrade more complex xyloglucans and notably is able to cleave near more substituted xyloglucan motifs such as L [i.e. α-L-Fucp-(1 → 2)-β-D-Galp-(1 → 2)-α-D-Xylp-(1 → 6)-β-D-Glcp]. LC-MS/MS analysis of product profiles of tamarind xyloglucan which had been catalytically degraded by XcXGHA revealed that XcXGHA has specificity for X in subsite -1. The 3D model suggests that XcXGHA consists of two seven-bladed β-propeller domains with the catalytic center formed by the interface of these two domains, which is conserved in xyloglucanases in the GH74 family. However, the XcXGHA has two amino acids (D264 and R472) that differ from the conserved residues of other GH74 xyloglucanases. These two amino acids were predicted to be located on the opposite side of the active site pocket, facing each other and forming a closing surface above the active site pocket. These two amino acids may contribute to the unique substrate specificity of the XcXGHA enzyme.
Compared to other plant cell wall-degrading enzymes, proteases are less well understood. In this study, the extracellular metalloprotease Prt1 from Pectobacterium carotovorum (formerly Erwinia carotovora) was expressed in Escherichia coli and characterized with respect to N-terminal processing, thermal stability, substrate targets, and cleavage patterns. Prt1 is an autoprocessing protease with an N-terminal signal pre-peptide and a pro-peptide which has to be removed in order to activate the protease. The sequential cleavage of the N-terminus was confirmed by mass spectrometry (MS) fingerprinting and N-terminus analysis. The optimal reaction conditions for the activity of Prt1 on azocasein were at pH 6.0, 50 °C. At these reaction conditions, K M was 1.81 mg/mL and k cat was 1.82 × 10(7) U M(-1). The enzyme was relatively stable at 50 °C with a half-life of 20 min. Ethylenediaminetetraacetic acid (EDTA) treatment abolished activity; Zn(2+) addition caused regain of the activity, but Zn(2+)addition decreased the thermal stability of the Prt1 enzyme presumably as a result of increased proteolytic autolysis. In addition to casein, the enzyme catalyzed degradation of collagen, potato lectin, and plant extensin. Analysis of the cleavage pattern of different substrates after treatment with Prt1 indicated that the protease had a substrate cleavage preference for proline in substrate residue position P1 followed by a hydrophobic residue in residue position P1' at the cleavage point. The activity of Prt1 against plant cell wall structural proteins suggests that this enzyme might become an important new addition to the toolbox of cell-wall-degrading enzymes for biomass processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.