AIMSThis study evaluated the therapeutic outcomes of early versus late caffeine therapy in preterm neonates. METHODSWe performed a systematic literature search in PubMed, Embase, CINAHL and CENTRAL from inception to 30 June 2016 to identify studies investigating the use of early caffeine therapy (initiated at less than 3 days of life) in preterm infants. Effect estimates were combined using random-effects meta-analysis. The primary outcomes for this study were bronchopulmonary dysplasia and mortality. RESULTSThe initial search found 4066 citations, of which 14 studies enrolling a total of 64 438 participants were included. The time of initiation of early caffeine therapy varied from the first 2 h to 3 days postnatal. Early caffeine therapy reduced the risk of bronchopulmonary dysplasia in both cohort studies (RR: 0.80, 95% CI: 0.66 to 0.96) and randomized controlled trials (RR: 0.67, 95% CI: 0.56 to 0.81). In cohort studies, neonates treated early with caffeine also showed decreased risks of patent ductus arteriosus, brain injury, retinopathy of prematurity and postnatal steroid use. However, the mortality rate was increased. CONCLUSIONSThe findings suggest that early caffeine therapy is associated with reduced incidence of bronchopulmonary dysplasia and may help decrease the burden of morbidities in preterm infants. WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT• Caffeine therapy is commonly used to treat apnoea of prematurity and facilitate extubation in neonates. It is shown to reduce the rates of bronchopulmonary dysplasia, severe retinopathy of prematurity, cerebral palsy and cognitive delay.• Recent publications suggests that early initiation of caffeine may have incremental benefits on neonatal outcomes. British Journal of Clinical Pharmacology WHAT THIS STUDY ADDS• This systematic review found that early caffeine therapy (initiated <3 days of life) was associated with a significant reduction in the incidence of bronchopulmonary dysplasia compared with late caffeine therapy. Tables of Links
The looming severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a long-lasting pandemic of coronavirus disease 2019 around the globe with substantial morbidity and mortality. N-acetylcysteine, being a nutraceutical precursor of an important antioxidant glutathione, can perform several biological functions in mammals and microbes. It has consequently garnered a growing interest as a potential adjunctive therapy for coronavirus disease. Here, we review evidence concerning the effects of N-acetylcysteine in respiratory viral infections based on currently available in vitro, in vivo, and human clinical investigations. The repurposing of a known drug such as N-acetylcysteine may significantly hasten the deployment of a novel approach for COVID-19. Since the drug candidate has already been translated into the clinic for several decades, its established pharmacological properties and safety and side-effect profiles expedite preclinical and clinical assessment for the treatment of COVID-19. In vitro data have depicted that N-acetylcysteine increases antioxidant capacity, interferes with virus replication, and suppresses expression of pro-inflammatory cytokines in cells infected with influenza viruses or respiratory syncytial virus. Furthermore, findings from in vivo studies have displayed that, by virtue of immune modulation and anti-inflammatory mechanism, N-acetylcysteine reduces the mortality rate in influenza-infected mice animal models. The promising in vitro and in vivo results have prompted the initiation of human subject research for the treatment of COVID-19, including severe pneumonia and acute respiratory distress syndrome. Albeit some evidence of benefits has been observed in clinical outcomes of patients, precision nanoparticle design of N-acetylcysteine may allow for greater therapeutic efficacy.
Background Mosquito-borne diseases remain a significant public health problem in tropical regions. Housing improvements such as screening of doors and windows may be effective in reducing disease transmission, but the impact remains unclear. Objectives To examine whether housing interventions were effective in reducing mosquito densities in homes and the impact on the incidence of mosquito-borne diseases. Methods In this systematic review and meta-analysis, we searched 16 online databases, including NIH PubMed, CINAHL Complete, LILACS, Ovid MEDLINE, and Cochrane Central Register of Controlled Trials for randomized trials published from database inception to June 30, 2020. The primary outcome was the incidence of any mosquito-borne diseases. Secondary outcomes encompassed entomological indicators of the disease transmission. I2 values were used to explore heterogeneity between studies. A random-effects meta-analysis was used to assess the primary and secondary outcomes, with sub-group analyses for type of interventions on home environment, study settings (rural, urban, or mixed), and overall house type (traditional or modern housing), Results The literature search yielded 4,869 articles. After screening, 18 studies were included in the qualitative review, of which nine were included in the meta-analysis. The studies enrolled 7,200 households in Africa and South America, reporting on malaria or dengue only. The type of home environmental interventions included modification to ceilings and ribbons to close eaves, screening doors and windows with nets, insecticide-treated wall linings in homes, nettings over gables and eaves openings, mosquito trapping systems, metal-roofed houses with mosquito screening, gable windows and closed eaves, and prototype houses using southeast Asian designs. Pooled analysis depicted a lower risk of mosquito-borne diseases in the housing intervention group (OR = 0.68; 95% CI = 0.48 to 0.95; P = 0.03). Subgroup analysis depicted housing intervention reduced the risk of malaria in all settings (OR = 0.63; 95% CI = 0.39 to 1.01; P = 0.05). In urban environment, housing intervention was found to decrease the risk of both malaria and dengue infections (OR = 0.52; 95% CI = 0.27 to 0.99; P = 0.05).Meta-analysis of pooled odds ratio showed a significant benefit of improved housing in reducing indoor vector densities of both Aedes and Anopheles (OR = 0.35; 95% CI = 0.23 to 0.54; P<0.001). Conclusions Housing intervention could reduce transmission of malaria and dengue among people living in the homes. Future research should evaluate the protective effect of specific house features and housing improvements associated with urban development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.