Background 18F-THK5351 is a quinoline-derived tau imaging agent with high affinity to paired helical filaments (PHF). However, high levels of 18F-THK5351 retention in brain regions thought to contain negligible concentrations of PHF raise questions about the interpretation of the positron emission tomography (PET) signals, particularly given previously described interactions between quinolone derivatives and monoamine oxidase B (MAO-B). Here, we tested the effects of MAO-B inhibition on 18F-THK5351 brain uptake using PET and autoradiography.MethodsEight participants (five mild cognitive impairment, two Alzheimer’s disease, and one progressive supranuclear palsy) had baseline 18F-AZD4694 and 18F-THK5351 scans in order to quantify brain amyloid and PHF load, respectively. A second 18F-THK5351 scan was conducted 1 week later, 1 h after a 10-mg oral dose of selegiline. Three out of eight patients also had a third 18F-THK5351 scan 9–28 days after the selegiline administration. The primary outcome measure was standardized uptake value (SUV), calculated using tissue radioactivity concentration from 50 to 70 min after 18F-THK5351 injection, normalizing for body weight and injected radioactivity. The SUV ratio (SUVR) was determined using the cerebellar cortex as the reference region. 18F-THK5351 competition autoradiography studies in postmortem tissue were conducted using 150 and 500 nM selegiline.ResultsAt baseline, 18F-THK5351 SUVs were highest in the basal ganglia (0.64 ± 0.11) and thalamus (0.62 ± 0.14). In the post-selegiline scans, the regional SUVs were reduced on average by 36.7% to 51.8%, with the greatest reduction noted in the thalamus (51.8%) and basal ganglia (51.4%). MAO-B inhibition also reduced 18F-THK5351 SUVs in the cerebellar cortex (41.6%). The SUVs remained reduced in the three patients imaged at 9–28 days. Tissue autoradiography confirmed the effects of MAO-B inhibition on 18F-THK5351 uptake.ConclusionsThese results indicate that the interpretation of 18F-THK5351 PET images, with respect to tau, is confounded by the high MAO-B availability across the entire brain. In addition, the heterogeneous MAO-B availability across the cortex may limit the interpretation of 18F-THK5351 scans using reference region methods.
BackgroundImaging agents capable of quantifying the brain’s tau aggregates will allow a more precise staging of Alzheimer’s disease (AD). The aim of the present study was to examine the in vitro properties as well as the in vivo kinetics, using gold standard methods, of the novel positron emission tomography (PET) tau imaging agent [18F]MK-6240.MethodsIn vitro properties of [18F]MK-6240 were estimated with autoradiography in postmortem brain tissues of 14 subjects (seven AD patients and seven age-matched controls). In vivo quantification of [18F]MK-6240 binding was performed in 16 subjects (four AD patients, three mild cognitive impairment patients, six healthy elderly individuals, and three healthy young individuals) who underwent 180-min dynamic scans; six subjects had arterial sampling for metabolite correction. Simplified approaches for [18F]MK-6240 quantification were validated using full kinetic modeling with metabolite-corrected arterial input function. All participants also underwent amyloid-PET and structural magnetic resonance imaging.ResultsIn vitro [18F]MK-6240 uptake was higher in AD patients than in age-matched controls in brain regions expected to contain tangles such as the hippocampus, whereas no difference was found in the cerebellar gray matter. In vivo, [18F]MK-6240 displayed favorable kinetics with rapid brain delivery and washout. The cerebellar gray matter had low binding across individuals, showing potential for use as a reference region. A reversible two-tissue compartment model well described the time–activity curves across individuals and brain regions. Distribution volume ratios using the plasma input and standardized uptake value ratios (SUVRs) calculated after the binding approached equilibrium (90 min) were correlated and higher in mild cognitive impairment or AD dementia patients than in controls. Reliability analysis revealed robust SUVRs calculated from 90 to 110 min, while earlier time points provided inaccurate estimates.ConclusionsThis evaluation shows an [18F]MK-6240 distribution in concordance with postmortem studies and that simplified quantitative approaches such as the SUVR offer valid estimates of neurofibrillary tangle load 90 min post injection. [18F]MK-6240 is a promising tau tracer with the potential to be applied in the disease diagnosis and assessment of therapeutic interventions.
ObjectiveTo identify the pathophysiologic mechanisms and clinical significance of anosognosia for cognitive decline in mild cognitive impairment.MethodsWe stratified 468 patients with amnestic mild cognitive impairment into intact and impaired awareness groups, determined by the discrepancy between the patient and the informant score on the Everyday Cognition questionnaire. Voxel-based linear regression models evaluated the associations between self-awareness status and baseline β-amyloid load, measured by [18F]florbetapir, and the relationships between awareness status and regional brain glucose metabolism measured by [18F]fluorodeoxyglucose at baseline and at 24-month follow-up. Multivariate logistic regression tested the association of awareness status with conversion from amnestic mild cognitive impairment to dementia.ResultsWe found that participants with impaired awareness had lower [18F]fluorodeoxyglucose uptake and increased [18F]florbetapir uptake in the posterior cingulate cortex at baseline. In addition, impaired awareness in mild cognitive impairment predicted [18F]fluorodeoxyglucose hypometabolism in the posterior cingulate cortex, left basal forebrain, bilateral medial temporal lobes, and right lateral temporal lobe over 24 months. Furthermore, participants with impaired awareness had a nearly 3-fold increase in likelihood of conversion to dementia within a 2-year time frame.ConclusionsOur results suggest that anosognosia is linked to Alzheimer disease pathophysiology in vulnerable structures, and predicts subsequent hypometabolism in the default mode network, accompanied by an increased risk of progression to dementia. This highlights the importance of assessing awareness of cognitive decline in the clinical evaluation and management of individuals with amnestic mild cognitive impairment.
Objective:To identify regional brain metabolic dysfunctions associated with neuropsychiatric symptoms (NPS) in preclinical Alzheimer disease (AD).Methods:We stratified 115 cognitively normal individuals into preclinical AD (both amyloid and tau pathologies present), asymptomatic at risk for AD (either amyloid or tau pathology present), or healthy controls (no amyloid or tau pathology present) using [18F]florbetapir PET and CSF phosphorylated tau biomarkers. Regression and voxel-based regression models evaluated the relationships between baseline NPS measured by the Neuropsychiatric Inventory (NPI) and baseline and 2-year change in metabolism measured by [18F]fluorodeoxyglucose (FDG) PET.Results:Individuals with preclinical AD with higher NPI scores had higher [18F]FDG uptake in the posterior cingulate cortex (PCC), ventromedial prefrontal cortex, and right anterior insula at baseline. High NPI scores predicted subsequent hypometabolism in the PCC over 2 years only in individuals with preclinical AD. Sleep/nighttime behavior disorders and irritability and lability were the components of the NPI that drove this metabolic dysfunction.Conclusions:The magnitude of NPS in preclinical cases, driven by sleep behavior and irritability domains, is linked to transitory metabolic dysfunctions within limbic networks vulnerable to the AD process and predicts subsequent PCC hypometabolism. These findings support an emerging conceptual framework in which NPS constitute an early clinical manifestation of AD pathophysiology.
BackgroundThere is accumulating evidence that synaptic loss precedes neuronal loss and correlates best with impaired memory formation in Alzheimer’s disease (AD). Cerebrospinal fluid (CSF) synaptosomal-associated protein 25 (SNAP-25) is a newly discovered marker indicating synaptic damage. We here test CSF SNAP-25 and SNAP-25/amyloid-β42 (Aβ42) ratio as a diagnostic marker for predicting cognitive decline and brain structural change in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database.MethodsWe stratified 139 participants from the ADNI database into cognitively normal (CN; n = 52), stable mild cognitive impairment (sMCI; n = 22), progressive MCI (pMCI; n = 47), and dementia due to AD (n = 18). Spearman correlation was performed to test the relationships between biomarkers. Overall diagnostic accuracy (area under the curve (AUC)) was obtained from receiver operating curve (ROC) analyses. Cox proportional hazard models tested the effect of CSF SNAP-25 and SNAP-25/Aβ42 measures on the conversion from MCI to AD. Relationships between the CSF SNAP-25 levels, SNAP-25/Aβ42 ratio, and diagnostic groups were tested with linear regressions. Linear mixed-effects models and linear regression models were used to evaluate CSF SNAP-25 and SNAP-25/Aβ42 as predictors of AD features, including cognition measured by the Mini-Mental State Examination (MMSE) and brain structure and white matter hyperintensity (WMH) measured by magnetic resonance imaging (MRI).ResultsCSF SNAP-25 and SNAP-25/Aβ42 were increased in patients with pMCI and AD compared with CN, and in pMCI and AD compared with sMCI. Cognitively normal subjects who progressed to MCI or AD during follow-up had increased SNAP-25/Aβ42 ratio compared with nonprogressors. CSF SNAP-25, especially SNAP-25/Aβ42, offers diagnostic utility for pMCI and AD. CSF SNAP-25 and SNAP-25/Aβ42 significantly predicted conversion from MCI to AD. In addition, elevated SNAP-25/Aβ42 ratio was associated with the rate of hippocampal atrophy in pMCI and the rate of change of cognitive impairment in CN over the follow-up period.ConclusionsThese data suggest that both CSF SNAP-25 and SNAP-25/Aβ42 ratio are already increased at the early clinical stage of AD, and indicate the promise of CSF SNAP-25 and SNAP-25/Aβ42 ratio as diagnostic and prognostic biomarkers for the earliest symptomatic stage of AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.