Wheeled based sniffer robots have been using in current research trend of odor plume tracking, but they have a serious pitfall because they only perform2D odor plume tracking which is ineffective. The main reason of being ineffective is because wheeled sniffer robots ignore the fact that the majority of odor plumes are released into 3D space instead of 2D space. Therefore, a flying sniffer robot is needed to overcome 3D odor plume tracking problem. In this paper, we propose to use a quadrotor as the locomotion of a flying sniffer robot. In order to make sure the quadrotor based flying sniffer robot can perform well in odor plumes tracking, we have carried out a detail study in airflow simulation analysis by using Computational Fluid Dynamics (CFD) software. Besides, we also conducted experiments to determine the odor sensing ability of quadrotor based flying sniffer robot. From our experiments, we are able to identify the odor sensing region of quadrotor based flying sniffer robot in quantitative measurement. From airflow analysis simulation study and experiments, we proved that a quadrotor based flying sniffer robot is a feasible solution for 3D odor plume tracking.
Most of the reported three-dimensional chemical plume tracing methods use stereo sensing method to determine the next tracing step direction. For example, multiple sensors are used for detection in the left, right, up and down directions. Left and right detections are feasible for stereo sniffing; unfortunately, the same approach is infeasible for the up/down sensing of the quadrotor platforms because the propellers of the quadrotor continuously draw the air from the top and bring it down, which affects the sensing of the upper and lower sensors, and fails to determine the subsequent tracing step of up/down direction. Therefore, up/down sensing in the surging stage of chemical plume tracing is ineffective for quadrotor platforms (chemical plume tracing has two stages: surging and casting). To solve the problem, we propose an alternative that is not in the surging but in the casting stage of chemical plume tracing, by designing a new three-dimensional chemical plume tracing technique with variations of altitude (z-axis) control during the casting stage, which has never been considered in the previous works. Besides, we use a computational fluid dynamics software to study the airflow pattern of quadrotor platform. Subsequently, a fuzzy-based stereo-sniffing algorithm is developed by considering the quadrotor propeller's air intake stream angle associated with the environmental wind direction angle, so as to improve the accuracy of stereo sensing. The results of the proposed solutions are verified and validated via both experimental and simulation approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.