a b s t r a c tWhile cyclic scheduling is involved in numerous real-world applications, solving the derived problem is still of exponential complexity. This paper focuses specifically on modelling the manufacturing application as a cyclic job shop problem and we have developed an efficient neural network approach to minimise the cycle time of a schedule. Our approach introduces an interesting model for a manufacturing production, and it is also very efficient, adaptive and flexible enough to work with other techniques. Experimental results validated the approach and confirmed our hypotheses about the system model and the efficiency of neural networks for such a class of problems.
AbstractWhile cyclic scheduling is involved in numerous real-world applications, solving the derived problem is still of exponential complexity. This paper focuses specifically on modelling the manufacturing application as a cyclic job shop problem and we have developed an efficient neural network approach to minimise the cycle time of a schedule. Our approach introduces an interesting model for a manufacturing production, and it is also very efficient, adaptive and flexible enough to work with other techniques. Experimental results validated the approach and confirmed our hypotheses about the system model and the efficiency of neural networks for such a class of problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.