Stone column has been used widely to improve the foundation for many structures. Many designs of stone column are based on the unit cell concept. However, the intrinsic mechanism of stress transfer between the column and the surrounding soil has not been investigated thoroughly. This paper presents the important features of stress sharing mechanism in unit cell concept under an embankment loading. The arching effect, the deformation mode, the stress concentration ratio and the plastic straining in the unit cell are the main focus of this paper. Finite element software PLAXIS was used to examine these features. Unit cell was simulated as a two-dimensional (2D) axisymmetrical model and a representative three dimensional model in the numerical analysis. Drained loading condition was analyzed in this study in which the embankment is assumed to be built slowly with no excess pore pressure buildup. The change of the stress concentration ratio as the embankment height increases was also studied. From this study, it was found that the bulging happened near the column head accompanied by multiple shear bands progressing along the column. Generally, stone column in the unit cell shared about 4-5 times more the loads than the surrounding soils throughout the column depth. In most cases, 2D and 3D models give results that are similar to each other especially on the settlement performance and the failure mechanism.
Compression index and coefficient of consolidation are two most important parameters in obtaining the consolidation characteristics of cohesive soil. Considerable time and effort are required to obtain these parameters from the oedometer test. Therefore, this study aims to correlate these two parameters with the index properties. Five remoulded samples are tested for their physical properties as well as their consolidation characteristics. The results show good relationship was obtained for the liquid limit and the compression index while the coefficient of consolidation is best correlated with the plastic limit. Multiple regression analysis was performed to improve the prediction. Liquid limit is best coupled with specific gravity to estimate the compression index while plastic limit and plastic index can be used to best predict the coefficient of consolidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.