Document denoising and binarization are fundamental problems in the document processing space, but current datasets are often too small and lack sufficient complexity to effectively train and benchmark modern data-driven machine learning models. To fill this gap, we introduce ShabbyPages, a new document image dataset designed for training and benchmarking document denoisers and binarizers. ShabbyPages contains over 6,000 clean "born digital" images with synthetically-noised counterparts ("shabby pages") that were augmented using the Augraphy document augmentation tool to appear as if they have been printed and faxed, photocopied, or otherwise altered through physical processes. In this paper, we discuss the creation process of ShabbyPages and demonstrate the utility of ShabbyPages by training convolutional denoisers which remove real noise features with a high degree of human-perceptible fidelity, establishing baseline performance for a new ShabbyPages benchmark.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.