The development of anti-metastatic drugs is an urgent healthcare priority for cancer patients, since metastasis is thought to account for around 90% of cancer deaths. Current antimetastatic treatment options are limited and often associated with poor long-term survival and systemic toxicities. Bcl3, a facilitator protein of the NF-B family, is associated with poor prognosis in a range of tumor types. Bcl3 has been directly implicated in the metastasis of tumor cells, yet is well tolerated when constitutively deleted in murine models, making it a promising therapeutic target. Here we describe the identification and characterization of the first small molecule Bcl3 inhibitor, by employing a virtual drug design and screening approach against a computational model of the Bcl3-NFkB1(p50) protein-protein interaction. From selected virtual screening hits, one compound (JS6) showed potent intracellular Bcl3-inhibitory activity. JS6 treatment led to reductions in Bcl3-NFkB1 binding, tumor colony formation and cancer cell migration in vitro; and tumor-stasis and anti-metastatic activity in vivo, whilst being devoid of overt systemic toxicity. These results represent a successful application of in silico screening in the identification of protein-protein inhibitors for novel intra-cellular targets, and confirm Bcl3 as a potential anti-metastatic target.
Highlights Synthesis of 23 novel deshydroxy bicalutamide derivatives. Identification of novel and potent double branched AR antagonists. Enhanced anticancer activity against PC compared to bicalutamide and enzalutamide. Strong downregulation of PSA expression in qPCR analysis of LnCaP cell line. Molecular modelling provides a rational explanation of the SAR observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.