A generalized model to study dislocation loops growth in irradiated binary Zr-based alloys is presented. It takes into account temperature effects, efficiencies of loops to absorb point defects dependent on the loop size, an influence of locality of grain boundary sink strength, and concentration of the alloying element. This model is used to describe the dynamics of loop radii growth in zirconium-niobium alloys under neutron irradiation at reactor conditions. A growth of both loop radii and strains is studied at different grain sizes, location from grain boundaries, and concentration of niobium. It is shown that locality of grain boundary sinks results in a non-uniform deformation of the crystal inside the grains. Additionally, an introduction of niobium as an alloying element decreases the loop radii but promotes the growth of local strains inside the grains.
Within slightly non-extensive statistics and the related numerical model, a picture is elaborated to treat self-similar time series as a thermodynamic system. Thermodynamic-type characteristics relevant to temperature, pressure, entropy, internal and free energies are introduced and tested. The statistics developed is shown to be governed by the effective temperature being exponential measure of the fractal dimension of the time series. Testing of the analytical consideration is based on the numerical scheme of non-extensive random walk. Effective temperature is found numerically to show that its value is reduced to averaged energy per one degree of freedom.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.