The high-pressure sliding (HPS) process was applied for grain refinement of a pipe form of an Al-3wt%Mg-0.2wt%Sc alloy by developing two types of straining techniques (called in this study anvil sliding and mandrel sliding). To achieve a homogeneous microstructure throughout the cross-section of the pipe, the sample is rotated around the longitudinal axis every after sliding operation by introducing multi-pass technique, named multi-pass HPS (MP-HPS) as developed earlier for rods. The MP-HPS-processed sample shows ultrafine-grained structures with an average grain size of ∼260 and ∼300 nm after the HPS processing using anvil sliding and mandrel sliding. The samples also exhibit superplasticity with total elongations well more than 400%, respectively. A finite-element method is used to simulate the evolution of strain in the HPS processing and demonstrates that the simulation well represents the experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.