Insulation by myelin lipids is essential to fast action potential conductivity: changes in their quality or amount can cause several neurologic disorders. Sjögren-Larsson syndrome (SLS) is one such disorder, which is caused by mutations in the fatty aldehyde dehydrogenase ALDH3A2. To date, the molecular mechanism underlying SLS pathology has remained unknown. In this study, we found that Aldh3a2 is expressed in oligodendrocytes and neurons in the mouse brain, and neurons of Aldh3a2 knockout (KO) mice exhibited impaired metabolism of the long-chain base, a component of sphingolipids. Aldh3a2 KO mice showed several abnormalities corresponding to SLS symptoms in behavioral tests, including increased paw slips on a balance beam and light-induced anxiety. In their brain tissue, 2-hydroxygalactosylceramide, an important lipid for myelin function and maintenance, was reduced by the inactivation of fatty acid 2-hydroxylase. Our findings provide important new insights into the molecular mechanisms responsible for neural pathogenesis caused by lipid metabolism abnormalities.-Kanetake, T., Sassa, T., Nojiri, K., Sawai, M., Hattori, S., Miyakawa, T., Kitamura, T., Kihara, A. Neural symptoms in a gene knockout mouse model of Sjögren-Larsson syndrome are associated with a decrease in 2-hydroxygalactosylceramide.
Sjögren–Larsson syndrome (SLS) is an inherited neurocutaneous disorder whose causative gene encodes the fatty aldehyde dehydrogenase ALDH3A2. To date, the detailed molecular mechanism of the skin pathology of SLS has remained largely unclear. We generated double knockout (DKO) mice for
Aldh3a2
and its homolog
Aldh3b2
(a pseudogene in humans). These mice showed hyperkeratosis and reduced fatty aldehyde dehydrogenase activity and skin barrier function. The levels of ω-
O
-acylceramides (acylceramides), which are specialized ceramides essential for skin barrier function, in the epidermis of DKO mice were about 60% of those in wild type mice. In the DKO mice, levels of acylceramide precursors (ω-hydroxy ceramides and triglycerides) were increased, suggesting that the final step of acylceramide production was inhibited. A decrease in acylceramide levels was also observed in human immortalized keratinocytes lacking
ALDH3A2
. Differentiated keratinocytes prepared from the DKO mice exhibited impaired long-chain base metabolism. Based on these results, we propose that the long-chain-base–derived fatty aldehydes that accumulate in DKO mice and SLS patients attack and inhibit the enzyme involved in the final step of acylceramide. Our findings provide insight into the pathogenesis of the skin symptoms of SLS, i.e., decreased acylceramide production, and its molecular mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.