Induced pluripotent stem cells (iPSCs)can be generated by the expression of defined transcription factors not only from normal tissue, but also from malignant cells. Cancer-derived iPSCs are expected to provide a novel experimental opportunity to establish the disease model. We generated iPSCs from imatinib-sensitive chronic myelogenous leukemia (CML) patient samples. Remarkably, the CML-iPSCs were resistant to imatinib although they consistently
We investigated the role of therapeutic dose monitoring (TDM) in the treatment of fungal infections with voriconazole through 49 analyses of 34 patients who received treatment for hematologic diseases. Voriconazole concentration was highly variable among patients regardless of renal, liver functions, or age, and the effect of dose enhancement was not constant. This indicates the difficulty of predicting voriconazole concentration without TDM. We evaluated the outcome with the composite assessment system where patients were assumed non-responders when they failed to show improvement in at least 2 of the following 3 criteria: clinical, radiologic, and mycologic. We showed that concentration-response relationship depended on the status of underlying hematologic diseases; this relationship was observed only in cases without refractory hematologic diseases, but not in those with refractory diseases. In the former group, cases with >2 mg/L of concentration were associated with good response to voriconazole. On the other hand, elevation of hepatic enzyme was frequently observed when voriconazole concentration was >6 mg/L. From these results, we concluded that TDM should be executed and targeted to 2-6 mg/L to improve efficacy and to avoid side effects.
Leukemia stem cells (LSC) are resistant to conventional chemotherapy and persistent LSC after chemotherapy are supposed to be a major cause of relapse. However, information on genetic or epigenetic regulation of stem cell properties is still limited and LSC-targeted drugs have scarcely been identified. Epigenetic regulators are associated with many cellular processes including maintenance of stem cells. Of note are polycomb group proteins, because they potentially control stemness, and can be pharmacologically targeted by a selective inhibitor (DZNep). Therefore, we investigated the therapeutic potential of EZH2 inhibition in mixed lineage leukemia (MLL) fusion leukemia. Intriguingly, EZH2 inhibition by DZNep or shRNA not only suppressed MLL fusion leukemia proliferation but also reduced leukemia initiating cells (LIC) frequency. Expression analysis suggested that p16 upregulation was responsible for LICs reduction. Knockdown of p16 canceled the survival advantage of mice treated with DZNep. Chromatin immunoprecipitation assays demonstrated that EZH2 was highly enriched around the transcription-start-site of p16, together with H3K27 methylation marks in MLL/ENL and Hoxa9/Meis1 transduced cells but not in E2A/HLF transduced cells. Although high expression of Hoxa9 in MLL fusion leukemia is supposed to be responsible for the recruitment of EZH2, our data also suggest that there may be some other mechanisms independent of Hoxa9 activation to suppress p16 expression, because expression levels of Hoxa9 and p16 were not inversely related between MLL/ENL and Hoxa9/Meis1 transduced cells. In summary, our findings show that EZH2 is a potential therapeutic target of MLL fusion leukemia stem cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.