Seasonal changes in temperature and day length are distinct between rural and urban areas due to urban warming and the presence of artificial light at night. Many studies have focused on the impacts of these ubiquitous signatures on daily biological events, but empirical studies on their impacts on insect seasonality are limited. In the present study, we used the flesh fly Sarcophaga similis as a model insect to determine the impacts of urbanization on the incidence and timing of diapause (dormancy), not only in the laboratory but also in rural and urban conditions. In the laboratory, diapause entry was affected by night-time light levels as low as 0.01 lux. We placed fly cages on outdoor shelves in urban and rural areas to determine the timing of diapause entry; it was retarded by approximately four weeks in urban areas relative to that in rural areas. Moreover, almost all flies in the site facing an urban residential area failed to enter diapause, even by late autumn. Although an autumnal low temperature in the urban area would mitigate the negative effect of artificial light at night, strong light pollution seriously disrupts the flesh fly seasonal adaptation.
Many temperate insects enter diapause (dormancy) for overwintering in response to short days (long nights). A latitudinal cline in the critical day lengths for the photoperiodic induction of diapause has been reported in a variety of insect species. However, the physiological mechanisms underlying this cline have remained elusive. We approached this issue in the flesh fly Sarcophaga similis, in which the photoperiodic time measurement system meets the 'external coincidence model'. In this model, measuring day lengths depends on whether the photoinducible phase (φi), determined by a circadian clock, is exposed to light or not. First, we detected a clear latitudinal cline in the critical day lengths of flies collected from four localities at different latitudes. The phase positions of the φi, which can be verified by night interruption photoperiods, also showed a clear latitudinal cline. This result supports the hypothesis that the latitudinal cline in the critical day lengths is produced by the difference in the phase positions of the φi among different strains. A sexual difference in the critical day lengths for photoperiodic induction has also been detected in various species. In this study, a sexual difference in the critical day lengths was observed in the southern strains, but p. 3 there was no sexual difference in the phase positions of the φi. This result indicates that both sexes measure photoperiods in the same manner. Males are less sensitive than females to the light pulse given at the φi, suggesting a quantitative difference in the photoperiodic time measurement and counter systems. This study clearly reveals that distinct mechanisms induce latitudinal and sexual differences in the critical day lengths for the photoperiodic induction of diapause in a fly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.