In this paper, we propose a novel selection strategy for contrastive learning for medical images. On natural images, contrastive learning uses augmentations to select positive and negative pairs for the contrastive loss. However, in the medical domain, arbitrary augmentations have the potential to distort small localized regions that contain the biomarkers we are interested in detecting. A more intuitive approach is to select samples with similar disease severity characteristics, since these samples are more likely to have similar structures related to the progression of a disease. To enable this, we introduce a method that generates disease severity labels for unlabeled OCT scans on the basis of gradient responses from an anomaly detection algorithm. These labels are used to train a supervised contrastive learning setup to improve biomarker classification accuracy by as much as 6% above self-supervised baselines for key indicators of Diabetic Retinopathy.
In this work, we present a methodology to shape a fisheye-specific representation space that reflects the interaction between distortion and semantic context present in this data modality. Fisheye data has the wider field of view advantage over other types of cameras, but this comes at the expense of high radial distortion. As a result, objects further from the center exhibit deformations that make it difficult for a model to identify their semantic context. While previous work has attempted architectural and training augmentation changes to alleviate this effect, no work has attempted to guide the model towards learning a representation space that reflects this interaction between distortion and semantic context inherent to fisheye data. We introduce an approach to exploit this relationship by first extracting distortion class labels based on an object's distance from the center of the image. We then shape a backbone's representation space with a weighted contrastive loss that constrains objects of the same semantic class and distortion class to be close to each other within a lower dimensional embedding space. This backbone trained with both semantic and distortion information is then fine-tuned within an object detection setting to empirically evaluate the quality of the learnt representation. We show this method leads to performance improvements by as much as 1.1% mean average precision over standard object detection strategies and .6% improvement over other state of the art representation learning approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.