A number of neurodegenerative disorders may potentially be treated by the delivery of therapeutic genes to neurons. Nonviral gene delivery systems, however, typically provide low transfection efficiency in post-mitotic differentiated neurons. To uncover mechanistic reasons for this observation, we compared gene transfer to undifferentiated and differentiated SH-SY5Y cells using polyethylenimine (PEI)/DNA nanocomplexes. Differentiated cells exhibited substantially lower uptake of gene vectors. To overcome this bottleneck, RGD or HIV-1 Tat peptides were attached to PEI/DNA nanocomplexes via poly(ethylene glycol) (PEG) spacer molecules. Both RGD and Tat improved the cellular uptake of gene vectors and enhanced gene transfection efficiency of primary neurons up to 14-fold. RGD functionalization resulted in a statistically significant increase in vector escape from endosomes, suggesting it may improve gene delivery by more than one mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.