A cyclic analogue, [cyclo(87-99)MBP [87][88][89][90][91][92][93][94][95][96][97][98][99] [87][88][89][90][91][92][93][94][95][96][97][98][99] , reported previously for suppressing, to a varying degree, autoimmune encephalomyelitis in a rat animal model, were found in this study to possess the following immunomodulatory properties: (i) they suppressed the proliferation of a CD4 T-cell line raised from a multiple sclerosis patient, (ii) they scored the best in vitro TH2/TH1 cytokine ratio in peripheral blood mononuclear cell cultures derived from 13 multiple sclerosis patients, inducing IL-10 selectively, and (iii) they bound to HLA-DR4, first to be reported for cyclic MBP peptides. In addition, cyclic peptides were found to be more stable to lysosomal enzymes and Cathepsin B, D, and H, compared to their linear counterparts. Taken together, these data render cyclic mimics as putative drugs for treating multiple sclerosis and potentially other Th1-mediated autoimmune diseases.
Autoimmune diseases affect about 3% of the world population, more frequently women than men, and their incidence is attributed to an immune response of a genetically predisposed individual to an environmental pathogen, under the influence of inadequate immuno-regulatory mechanisms. Advances in understanding the cellular activity pathways and cytokine expression profiles have led to new therapeutic regiments, like soluble receptors, monoclonal antibodies and molecular mimetics that have been employed to enhance or replace conventional immunosuppressive therapies. Among new biologicals that have been developed to target defined pathways of the adaptive immune response are TNF-alpha inhibitors. TNF-alpha is a proinflammatory cytokine elevated in many autoimmune lesions, and its deregulation characterizes many autoimmune diseases. TNF-alpha seems to exhibit an immunoregulatory role that can alter the balance of T regulatory cells and orchestrate acute immunological responses. More than half a million autoimmune patients have received therapy with anti-TNF-alpha antibodies, usually because they were refractory to conventional treatments. This review offers an update on TNF-alpha-targeted therapies used in patients suffering from various autoimmune diseases, based on the current knowledge of disease pathogenesis, with emphasis on the efficacy and safety that clinical trials have shown until now.
Derangement of cellular immunity is central in the pathophysiology of multiple sclerosis (MS) and is often manifested by abnormal cytokine production. We investigated cytokine secretion in peripheral blood mononuclear cells (PBMC) of 18 MS patients and 15 controls and correlated cytokine polarization with the nature of antigenic stimulus. We synthesized two novel citrullinated peptides, linear [Cit(91), Ala(96), Cit(97)]MBP(87-99) and cyclo(87-99)[Cit(91), Ala(96), Cit(97)]MBP(87-99) that resulted from citrullination of 91,97 Arg residues in antagonists, linear [Arg(91), Ala(96)]MBP(87-99) and cyclo(87-99)[Arg(91), Ala(96)]MBP(87-99) peptides. PBMC from MS patients and controls were cultured with citrullinated peptides, and both peptides caused a Th1 polarization in all MS patients studied. In contrast, culture with noncitrullinated MBP peptides resulted in heterogeneous cytokine secretion that differed between individual patients. Thus, citrullination of self-antigens may potentially trigger disease in susceptible individuals. This finding may open new avenues in drug design of new substances that inhibit citrullination and arrest epitope spreading and worsening of MS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.