Consensus is one of the fundamental tasks studied in distributed computing. Processors have input values from some set V and they have to decide the same value from this set. If all processors have the same input value, then they must all decide this value. We study the task of consensus in a Multiple Access Channel (MAC) prone to faults, under a very weak communication model called the beeping model. Communication proceeds in synchronous rounds. Some processors wake up spontaneously, in possibly different rounds decided by an adversary. In each round, an awake processor can either listen, i.e., stay silent, or beep, i.e., emit a signal. In each round, a fault can occur in the channel independently with constant probability 0 < p < 1. In a fault-free round, an awake processor hears a beep if it listens in this round and if one or more other processors beep in this round. A processor still dormant in a fault-free round in which some other processor beeps is woken up by this beep and hears it. In a faulty round nothing is heard, regardless of the behaviour of the processors.An algorithm working with error probability at most ǫ, for a given ǫ > 0, is called ǫ-safe. Our main result is the design and analysis, for any constant ǫ > 0, of a deterministic ǫ-safe consensus algorithm that works in time O(log w) in a fault-prone MAC, where w is the smallest input value of all participating processors. We show that this time cannot be improved, even when the MAC is fault-free. The main algorithmic tool that we develop to achieve our goal, and that might be of independent interest, is a deterministic algorithm that, with arbitrarily small constant error probability, establishes a global clock in a fault-prone MAC in constant time.
In broadcasting, one node of a network has a message that must be learned by all other nodes. We study deterministic algorithms for this fundamental communication task in a very weak model of wireless communication. The only signals sent by nodes are beeps. Moreover, they are delivered to neighbors of the beeping node in an asynchronous way: the time between sending and reception is finite but unpredictable. We first observe that under this scenario, no communication is possible, if beeps are all of the same strength. Hence we study broadcasting in the bivalent beeping model, where every beep can be either soft or loud. At the receiving end, if exactly one soft beep is received by a node in a round, it is heard as soft. Any other combination of beeps received in a round is heard as a loud beep. The cost of a broadcasting algorithm is the total number of beeps sent by all nodes.We consider four levels of knowledge that nodes may have about the network: anonymity (no knowledge whatsoever), ad-hoc (all nodes have distinct labels and every node knows only its own label), neighborhood awareness (every node knows its label and labels of all neighbors), and full knowledge (every node knows the entire labeled map of the network and the identity of the source). We first show that in the anonymous case, broadcasting is impossible even for very simple networks. For each of the other three knowledge levels we provide upper and lower bounds on the minimum cost of a broadcasting algorithm. Our results show separations between all these scenarios. Perhaps surprisingly, the jump in broadcasting cost between the ad-hoc and neighborhood awareness levels is much larger than between the neighborhood awareness and full knowledge levels, although in the two former levels knowledge of nodes is local, and in the latter it is global.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.